论文标题

使用签名的射线距离功能(SRDF)的多视图重建

Multi-View Reconstruction using Signed Ray Distance Functions (SRDF)

论文作者

Zins, Pierre, Xu, Yuanlu, Boyer, Edmond, Wuhrer, Stefanie, Tung, Tony

论文摘要

在本文中,我们研究了多视图3D形状重建的新优化框架。最近的可区分渲染方法提供了具有隐式形状表示的突破性表现,尽管它们在估计的几何形状中仍然缺乏精度。另一方面,多视图立体声方法可以产生像素明智的几何准确性,并在沿观察光线沿局部深度预测。我们的方法桥接了两种策略之间具有新颖的体积形状表示形式的差距,该表示是隐式但具有像素深度参数化的,以更好地实现形状表面,并沿观看射线沿着一致的签名距离。该方法保留了像素准则,同时从优化中的体积整合中受益。为此,通过在体积离散化内的每个3D位置评估深度预测一致性与相应像素的光度一致性之间的一致性来优化深度。优化对相关的光合段性项不可知,该术语可能从基于中位数的基线到更精细的标准学到的功能都不同。我们的实验证明了体积整合具有深度预测的好处。他们还表明,我们的方法的表现优于标准3D基准的现有方法,并具有更好的几何估计。

In this paper, we investigate a new optimization framework for multi-view 3D shape reconstructions. Recent differentiable rendering approaches have provided breakthrough performances with implicit shape representations though they can still lack precision in the estimated geometries. On the other hand multi-view stereo methods can yield pixel wise geometric accuracy with local depth predictions along viewing rays. Our approach bridges the gap between the two strategies with a novel volumetric shape representation that is implicit but parameterized with pixel depths to better materialize the shape surface with consistent signed distances along viewing rays. The approach retains pixel-accuracy while benefiting from volumetric integration in the optimization. To this aim, depths are optimized by evaluating, at each 3D location within the volumetric discretization, the agreement between the depth prediction consistency and the photometric consistency for the corresponding pixels. The optimization is agnostic to the associated photo-consistency term which can vary from a median-based baseline to more elaborate criteria learned functions. Our experiments demonstrate the benefit of the volumetric integration with depth predictions. They also show that our approach outperforms existing approaches over standard 3D benchmarks with better geometry estimations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源