论文标题

Synthehicle:虚拟城市中多车型多摄像机跟踪

Synthehicle: Multi-Vehicle Multi-Camera Tracking in Virtual Cities

论文作者

Herzog, Fabian, Chen, Junpeng, Teepe, Torben, Gilg, Johannes, Hörmann, Stefan, Rigoll, Gerhard

论文摘要

智能城市应用程序(例如智能交通路由或事故预防)依靠计算机视觉方法来确切的车辆定位和跟踪。由于精确标记的数据缺乏,从多个摄像机中检测和跟踪3D的车辆被证明有挑战性。我们提出了一个庞大的合成数据集,用于多个重叠和非重叠摄像机视图中的多个车辆跟踪和分割。与现有的数据集不同,该数据集仅为2D边界框提供跟踪地面真相,我们的数据集还包含适用于相机和世界坐标中的3D边界框的完美标签,深度估计以及实例,语义和泛型细分。该数据集由17个小时的标记视频材料组成,从64个不同的白天,雨,黎明和夜幕场景中录制,使其成为迄今为止多目标多型多相机跟踪的最广泛数据集。我们提供用于检测,车辆重新识别以及单摄像机跟踪的基准。代码和数据公开可用。

Smart City applications such as intelligent traffic routing or accident prevention rely on computer vision methods for exact vehicle localization and tracking. Due to the scarcity of accurately labeled data, detecting and tracking vehicles in 3D from multiple cameras proves challenging to explore. We present a massive synthetic dataset for multiple vehicle tracking and segmentation in multiple overlapping and non-overlapping camera views. Unlike existing datasets, which only provide tracking ground truth for 2D bounding boxes, our dataset additionally contains perfect labels for 3D bounding boxes in camera- and world coordinates, depth estimation, and instance, semantic and panoptic segmentation. The dataset consists of 17 hours of labeled video material, recorded from 340 cameras in 64 diverse day, rain, dawn, and night scenes, making it the most extensive dataset for multi-target multi-camera tracking so far. We provide baselines for detection, vehicle re-identification, and single- and multi-camera tracking. Code and data are publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源