论文标题

使用深卷积神经网络检测和分类

Detection and Classification of Brain tumors Using Deep Convolutional Neural Networks

论文作者

Balaji, Gopinath, Sen, Ranit, Kirty, Harsh

论文摘要

由于肿胀和病态增大,人体组织中组织的异常发育被称为肿瘤。它们主要被归类为良性和恶性。大脑中的肿瘤可能是致命的,因为它可能是癌性的,因此它可以以附近的健康细胞为食并不断增加大小。这可能会影响大脑中软组织,神经细胞和小血管。因此,有必要以最高的精度在早期阶段检测和分类。脑肿瘤的大小和位置不同,这使得很难理解其性质。由于附近的健康细胞与肿瘤之间的相似性,即使使用先进的MRI(磁共振成像)技术,脑肿瘤的检测和分类过程也可能是一项繁重的任务。在本文中,我们使用Keras和Tensorflow来实现最先进的卷积神经网络(CNN)体系结构,例如EdgitionNetB0,Resnet50,Xpection,Mobilenetv2和VGG16,使用转移学习来检测和分类三种类型的脑肿瘤 - Gliorsy-Gliorsy-Gliomely-Gliomaly-Gliomamal-Gliomamal-脑膜瘤,以及梅尼瘤,梅尼瘤,梅尼瘤和itititary。我们使用的数据集由3264个2-D磁共振图像和4个类组成。由于数据集的尺寸较小,因此使用各种数据增强技术来增加数据集的大小。我们提出的方法不仅包括数据增强,还包括各种图像剥夺技术,头骨剥离,裁剪和偏置校正。在我们提出的工作效率NETB0体系结构中,最佳准确性为97.61%。本文的目的是区分正常像素和异常像素,并以更好的准确性对它们进行分类。

Abnormal development of tissues in the body as a result of swelling and morbid enlargement is known as a tumor. They are mainly classified as Benign and Malignant. Tumour in the brain is fatal as it may be cancerous, so it can feed on healthy cells nearby and keep increasing in size. This may affect the soft tissues, nerve cells, and small blood vessels in the brain. Hence there is a need to detect and classify them during the early stages with utmost precision. There are different sizes and locations of brain tumors which makes it difficult to understand their nature. The process of detection and classification of brain tumors can prove to be an onerous task even with advanced MRI (Magnetic Resonance Imaging) techniques due to the similarities between the healthy cells nearby and the tumor. In this paper, we have used Keras and Tensorflow to implement state-of-the-art Convolutional Neural Network (CNN) architectures, like EfficientNetB0, ResNet50, Xception, MobileNetV2, and VGG16, using Transfer Learning to detect and classify three types of brain tumors namely - Glioma, Meningioma, and Pituitary. The dataset we used consisted of 3264 2-D magnetic resonance images and 4 classes. Due to the small size of the dataset, various data augmentation techniques were used to increase the size of the dataset. Our proposed methodology not only consists of data augmentation, but also various image denoising techniques, skull stripping, cropping, and bias correction. In our proposed work EfficientNetB0 architecture performed the best giving an accuracy of 97.61%. The aim of this paper is to differentiate between normal and abnormal pixels and also classify them with better accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源