论文标题
完全表征非亚伯式拓扑相变并用投影纠缠状态对任何人分裂的检测
Complete characterization of non-Abelian topological phase transitions and detection of anyon splitting with projected entangled pair states
论文作者
论文摘要
众所周知,固有的Abelian拓扑阶段的许多拓扑相变,伴随着Anyons的凝结和限制。但是,对于非亚伯式拓扑阶段而言,在其相变时可能会发生更多复杂的现象,因为非阿布莱恩人的多个退化自由度可以在阶段过渡后以不同的方式改变。在本文中,我们研究了这些新现象,包括使用预测的纠缠对状态(PEPS)(PEPS)(PEPS),包括部分凝结,部分解密,尤其是Anyon拆分(非亚伯利亚人将其分为不同种类的新任何人)。首先,我们表明可以从拓扑归化的基础状态下观察到任何分裂。接下来,我们构建了一组PEP,描述了同一非亚伯利亚人的所有可能的自由度。从具有基态的给定非亚伯利亚人的这组PEP的重叠中,我们可以提取部分冷凝的信息。然后,我们构造一个中心对象,一个由该集合中的PEP之间的规范和重叠定义的矩阵。可以从此矩阵中提取部分解限的信息。特别是,我们使用它来构建一个可以直接检测任何拆分的顺序参数。我们通过将其应用于一系列非阿贝尔拓扑相转换来证明我们的方法的力量:从$ d(s_3)$ Quantum double到折叠代码,从$ d(s_3)$ Quantum double到$ d(z_3)$ d Quantum double,从rep($ s_3 $)到toric net到toric code到toric code,以及最终从double issing stringnet Net-Net-Net Net Net Net Net Net-Net Net Net Net Net Net Net Net Net-Net Net Net Net-Net Net Net Net code。
It is well-known that many topological phase transitions of intrinsic Abelian topological phases are accompanied by condensation and confinement of anyons. However, for non-Abelian topological phases, more intricate phenomena can occur at their phase transitions, because the multiple degenerate degrees of freedom of a non-Abelian anyon can change in different ways after phase transitions. In this paper, we study these new phenomena, including partial condensation, partial deconfinement and especially anyon splitting (a non-Abelian anyon splits into different kinds of the new anyon species) using projected entangled pair states (PEPS). First, we show that anyon splitting can be observed from the topologically degenerate ground states. Next, we construct a set of PEPS describing all possible degrees of freedom of the same non-Abelian anyon. From the overlaps of this set of PEPS of a given non-Abelian anyon with the ground state, we can extract the information of partial condensation. Then, we construct a central object, a matrix defined by the norms and overlaps among the PEPS in that set. The information of partial deconfinement can be extracted from this matrix. In particular, we use it to construct an order parameter which can directly detect anyon splitting. We demonstrate the power of our approach by applying it to a range of non-Abelian topological phase transitions: From $D(S_3)$ quantum double to toric code, from $D(S_3)$ quantum double to $D(Z_3)$ quantum double, from Rep($S_3$) string-net to toric code, and finally from double Ising string-net to toric code.