论文标题

深入研究连续域的适应

Delving into the Continuous Domain Adaptation

论文作者

Xu, Yinsong, Jiang, Zhuqing, Men, Aidong, Liu, Yang, Chen, Qingchao

论文摘要

现有的域适应方法假设域差异是由一些离散属性和变化引起的,例如艺术,真实,绘画,快速绘画等。我们认为这是不现实的,因为使用一些离散属性来定义现实世界中的数据集是令人难以置信的。因此,我们建议研究一个新问题,即通过连续变化属性形成无限域的晶状体连续域适应(CDA)。利用两个标记的源域和几个观察到的未标记目标域数据的知识,CDA的目的是学习具有连续属性的整个数据分布的通用模型。除了提出新问题的贡献外,我们还提出了一种新颖的方法作为强大的CDA基线。具体而言,首先,我们提出了一种新颖的交替训练策略,以减少多个领域之间的差异,同时概括为看不见的目标域。其次,在估计跨域差异测量时,我们提出了连续性约束。最后,为了使差异与迷你批量大小相结合,我们设计了一个特定领域的队列,以维护源域的全局视图,从而进一步提高了适应性性能。事实证明,我们的方法可以使用广泛的实验实现CDA问题的最新问题。该代码可在https://github.com/spiresearch/cda上找到。

Existing domain adaptation methods assume that domain discrepancies are caused by a few discrete attributes and variations, e.g., art, real, painting, quickdraw, etc. We argue that this is not realistic as it is implausible to define the real-world datasets using a few discrete attributes. Therefore, we propose to investigate a new problem namely the Continuous Domain Adaptation (CDA) through the lens where infinite domains are formed by continuously varying attributes. Leveraging knowledge of two labeled source domains and several observed unlabeled target domains data, the objective of CDA is to learn a generalized model for whole data distribution with the continuous attribute. Besides the contributions of formulating a new problem, we also propose a novel approach as a strong CDA baseline. To be specific, firstly we propose a novel alternating training strategy to reduce discrepancies among multiple domains meanwhile generalize to unseen target domains. Secondly, we propose a continuity constraint when estimating the cross-domain divergence measurement. Finally, to decouple the discrepancy from the mini-batch size, we design a domain-specific queue to maintain the global view of the source domain that further boosts the adaptation performances. Our method is proven to achieve the state-of-the-art in CDA problem using extensive experiments. The code is available at https://github.com/SPIresearch/CDA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源