论文标题

部分可观测时空混沌系统的无模型预测

Multiple-Objective Packet Routing Optimization for Aeronautical ad-hoc Networks

论文作者

Zhang, Jiankang, Liu, Dong, Chen, Sheng, Ng, Soon Xin, Maunder, Robert G., Hanzo, Lajos

论文摘要

在云上方提供Internet服务令人兴奋,在这种情况下,Aeronautical {\ it {Ad-Hoc}}网络(AANET)构成了有希望的解决方案。但是,大型临时网络中数据包路由的优化非常具有挑战性。在本文中,我们开发了一种离散的$ε$多目标遗传算法($ε$ -DMOGA),用于共同优化端到端延迟,端到端频谱效率(SE)以及路径到期时间(PET),该时间(PET)指定了可以依赖路由路径多长时间而无需重新计算路径的时间。更具体地说,专门为航空通信设计的基于距离的自适应编码和调制方案(ACM)方案被利用用于量化每个链接可实现的SE。此外,每个节点处的排队延迟也被合并到多目标优化度量中。我们的$ε$ -DMOGA辅助多目标路由优化通过在两个选定的代表日期上在澳大利亚领空上收集的真实历史飞行数据验证。

Providing Internet service above the clouds is of ever-increasing interest and in this context aeronautical {\it{ad-hoc}} networking (AANET) constitutes a promising solution. However, the optimization of packet routing in large ad hoc networks is quite challenging. In this paper, we develop a discrete $ε$ multi-objective genetic algorithm ($ε$-DMOGA) for jointly optimizing the end-to-end latency, the end-to-end spectral efficiency (SE), and the path expiration time (PET) that specifies how long the routing path can be relied on without re-optimizing the path. More specifically, a distance-based adaptive coding and modulation (ACM) scheme specifically designed for aeronautical communications is exploited for quantifying each link's achievable SE. Furthermore, the queueing delay at each node is also incorporated into the multiple-objective optimization metric. Our $ε$-DMOGA assisted multiple-objective routing optimization is validated by real historical flight data collected over the Australian airspace on two selected representative dates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源