论文标题
自我监督的内窥镜图像关键点匹配
Self-Supervised Endoscopic Image Key-Points Matching
论文作者
论文摘要
在许多临床应用中,内窥镜图像之间的特征匹配和查找对应关系是从临床序列中进行快速异常定位的许多临床应用中的关键步骤。尽管如此,由于内窥镜图像中存在较高的纹理可变性,稳健和准确的特征匹配的发展成为一项具有挑战性的任务。最近,通过卷积神经网络(CNN)提取的深度学习技术已在各种计算机视觉任务中获得了吸引力。但是,他们都遵循一个有监督的学习计划,其中需要大量注释的数据才能达到良好的性能,这通常不总是可用于医疗数据数据库。为了克服与标记的数据稀缺性有关的限制,自我监督的学习范式最近在许多应用程序中表现出了巨大的成功。本文提出了一种基于深度学习技术的内窥镜图像匹配的新型自我监督方法。与标准手工制作的本地功能描述符相比,我们的方法在精确和召回方面优于它们。此外,与选择基于精度和匹配分数的基于最先进的基于深度学习的监督方法相比,我们的自我监管的描述符提供了竞争性能。
Feature matching and finding correspondences between endoscopic images is a key step in many clinical applications such as patient follow-up and generation of panoramic image from clinical sequences for fast anomalies localization. Nonetheless, due to the high texture variability present in endoscopic images, the development of robust and accurate feature matching becomes a challenging task. Recently, deep learning techniques which deliver learned features extracted via convolutional neural networks (CNNs) have gained traction in a wide range of computer vision tasks. However, they all follow a supervised learning scheme where a large amount of annotated data is required to reach good performances, which is generally not always available for medical data databases. To overcome this limitation related to labeled data scarcity, the self-supervised learning paradigm has recently shown great success in a number of applications. This paper proposes a novel self-supervised approach for endoscopic image matching based on deep learning techniques. When compared to standard hand-crafted local feature descriptors, our method outperformed them in terms of precision and recall. Furthermore, our self-supervised descriptor provides a competitive performance in comparison to a selection of state-of-the-art deep learning based supervised methods in terms of precision and matching score.