论文标题

建模段落级视觉语言语义对准多模式摘要

Modeling Paragraph-Level Vision-Language Semantic Alignment for Multi-Modal Summarization

论文作者

Cui, Chenhao, Liang, Xinnian, Wu, Shuangzhi, Li, Zhoujun

论文摘要

大多数当前的多模式摘要方法遵循级联的方式,在该方式中,首先使用现成的对象检测器来提取视觉特征,然后将这些功能与语言表示融合在一起,以使用编码器模型生成摘要。级联的方式无法捕获图像和段落之间的语义一致性,这对于确切的摘要至关重要。在本文中,我们向vil-sum提出了段落级级\ textbf {vi} sion- \ textbf {l} arnguage语义对齐和多模式\ textbf {sum} marization。 VIL-SUM的核心是一个联合多模式编码器,具有两个精心设计的任务:图像重新排序和图像选择。联合多模式编码器捕获了模式之间的相互作用,其中重新排序任务指导该模型学习段落级别的语义对齐,而选择任务指导模型在最终摘要中将模型指向所选摘要相关的图像。实验结果表明,我们提出的VIL-SUM显着超过了当前的最新方法。在进一步的分析中,我们发现两个精心设计的任务和联合多模式编码器可以有效地指导模型学习合理的段落图像和摘要图像关系。

Most current multi-modal summarization methods follow a cascaded manner, where an off-the-shelf object detector is first used to extract visual features, then these features are fused with language representations to generate the summary with an encoder-decoder model. The cascaded way cannot capture the semantic alignments between images and paragraphs, which are crucial to a precise summary. In this paper, we propose ViL-Sum to jointly model paragraph-level \textbf{Vi}sion-\textbf{L}anguage Semantic Alignment and Multi-Modal \textbf{Sum}marization. The core of ViL-Sum is a joint multi-modal encoder with two well-designed tasks, image reordering and image selection. The joint multi-modal encoder captures the interactions between modalities, where the reordering task guides the model to learn paragraph-level semantic alignment and the selection task guides the model to selected summary-related images in the final summary. Experimental results show that our proposed ViL-Sum significantly outperforms current state-of-the-art methods. In further analysis, we find that two well-designed tasks and joint multi-modal encoder can effectively guide the model to learn reasonable paragraphs-images and summary-images relations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源