论文标题
两年的《火星上的水冰云》的调查与ACS在板上Tgo
A Two Martian Years Survey of Water Ice Clouds on Mars with ACS onboard TGO
论文作者
论文摘要
大气化学套件(ACS)仪器的中间红外(MIR)通道Exomars痕量气孔(TGO)ESA-ROSCOSMOS任务已在2018年3月以来在2.3-4.2 $ $ M频谱的2.3-4.2 $ $ M SPECTLART中对火星大气进行了太阳宣传测量。我们使用以前开发的方法用于研究MY 34全球尘埃(GDS)(STCHERBININE等,2020),以监视火星水冰云中Martian Ice Clouds在ACS-MIR覆盖的前两年中的性质(有效的半径,灭绝,高度)。观察结果包括我36至34至$ l_s $ = 181°的周期$ l_s $ = 163°。我们确定云层的典型高度在夏季和冬季之间变化20至40 km,最大延伸时间在夏季,在夏季,在夏季,最大的延伸时间为80 km。同样,我们还注意到,在有限的时间范围内,云的高度在极区域和中纬度之间也有所不同20至40 km。我们还比较了我的34 GDS期间获得的观测值与从我35的同一时期的观察结果进行比较,使用后者作为表征该GD对云对云属性的影响的参考。此外,我们将检索与火星行星气候模型(PCM)的预测进行了比较,该预测显示了云高度的总体一致性,尽管该模型通常会预测云层顶部的较低高度。
The middle infrared (MIR) channel of the Atmospheric Chemistry Suite (ACS) instrument onboard the ExoMars Trace Gas Orbiter (TGO) ESA-Roscosmos mission has performed Solar occultation measurements of the Martian atmosphere in the 2.3-4.2 $μ$m spectral range since March 2018, which now covers two Martian Years (MY). We use the methodology previously developed for the study of the MY 34 Global Dust Storm (GDS) (Stcherbinine et al., 2020) to monitor the properties (effective radii, extinction, altitude) of the Martian water ice clouds over the first two Martian years covered by ACS-MIR. The observations encompass the period $L_s$ = 163° in MY 34 to $L_s$ = 181° in MY 36. We determine that the typical altitude of the clouds varies by 20 to 40 km between the summer and winter, with a maximum extension up to 80 km during summer in the midlatitudes. Similarly, we also note that for a limited temporal range, the altitude of the clouds also varies by 20 to 40 km between the polar regions and the midlatitudes. We also compare observations acquired during the MY 34 GDS to observations from the same period in MY 35, using that latter as a reference to characterize the effects of this GDS on the clouds' properties. In addition, we compare our retrievals with the predictions of the Mars Planetary Climate Model (PCM), which shows a reasonable agreement overall for the altitude of the clouds, although the model usually predicts lower altitudes for the top of the clouds.