论文标题

Ulisse:一种用于一次性天空探索的工具及其在主动银河核检测中的应用

ULISSE: A Tool for One-shot Sky Exploration and its Application to Active Galactic Nuclei Detection

论文作者

Doorenbos, Lars, Torbaniuk, Olena, Cavuoti, Stefano, Paolillo, Maurizio, Longo, Giuseppe, Brescia, Massimo, Sznitman, Raphael, Márquez-Neila, Pablo

论文摘要

现代的天空调查正在产生大量的观测数据,这使经典方法的应用用于分类和分析,具有挑战性和耗时。但是,使用自动机器和深度学习方法可以大大减轻此问题。我们提出了一种新的深度学习工具Ulisse,它从单个原型对象开始,能够识别具有相同形态和光度特性的对象,因此可以创建候选苏西亚列表。在这项工作中,我们专注于在斯隆数字天空调查的星系样本中应用方法来检测AGN候选物,因为光带中主动银河系核(AGN)的鉴定和分类仍然是外部术天文学中的一项挑战性任务。 Ulisse旨在初步探索大型天空调查,直接使用从Imagenet数据集提取的功能来执行相似性搜索。该方法能够迅速识别候选人列表,仅从给定原型的单个图像开始,而无需任何耗时的神经网络训练。我们的实验表明,乌里斯(Ulisse)能够根据宿主星系形态,颜色和中央核源的存在的结合来鉴定AGN候选物,其检索效率的范围从21%到65%(包括复合源),取决于原型,而随机猜测基线为12%。我们发现乌里斯(Ulisse)在早期型宿主星系中检索AGN最有效,而不是具有螺旋形或晚期特性的原型。根据这项工作中描述的结果,Ulisse可以是在当前和未来的宽场调查(例如欧几里得,LSST等)中选择不同类型的天体物理对象的有前途的工具,该工具每晚都针对数百万个来源。

Modern sky surveys are producing ever larger amounts of observational data, which makes the application of classical approaches for the classification and analysis of objects challenging and time-consuming. However, this issue may be significantly mitigated by the application of automatic machine and deep learning methods. We propose ULISSE, a new deep learning tool that, starting from a single prototype object, is capable of identifying objects sharing the same morphological and photometric properties, and hence of creating a list of candidate sosia. In this work, we focus on applying our method to the detection of AGN candidates in a Sloan Digital Sky Survey galaxy sample, since the identification and classification of Active Galactic Nuclei (AGN) in the optical band still remains a challenging task in extragalactic astronomy. Intended for the initial exploration of large sky surveys, ULISSE directly uses features extracted from the ImageNet dataset to perform a similarity search. The method is capable of rapidly identifying a list of candidates, starting from only a single image of a given prototype, without the need for any time-consuming neural network training. Our experiments show ULISSE is able to identify AGN candidates based on a combination of host galaxy morphology, color and the presence of a central nuclear source, with a retrieval efficiency ranging from 21% to 65% (including composite sources) depending on the prototype, where the random guess baseline is 12%. We find ULISSE to be most effective in retrieving AGN in early-type host galaxies, as opposed to prototypes with spiral- or late-type properties. Based on the results described in this work, ULISSE can be a promising tool for selecting different types of astrophysical objects in current and future wide-field surveys (e.g. Euclid, LSST etc.) that target millions of sources every single night.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源