论文标题

三维微型结构在硅心肌中获悉 - 朝着心脏扩散加权MRI的虚拟成像试验

Three-dimensional micro-structurally informed in silico myocardium -- towards virtual imaging trials in cardiac diffusion weighted MRI

论文作者

Lashgari, Mojtaba, Ravikumar, Nishant, Teh, Irvin, Li, Jing-Rebecca, Buckley, David L., Schneider, Jurgen E., Frangi, Alejandro F.

论文摘要

在硅组织模型中,可以评估磁共振成像的定量模型。这包括对成像生物标志物和组织微结构参数的验证和灵敏度分析。我们提出了一种新的方法来生成心肌微结构的现实数值幻影。我们扩展了以前的研究,该研究考虑了心肌细胞的变异性,心肌细胞(插入式椎间盘)之间的水交换,心肌微结构混乱和四个应贝方向。在该方法的第一阶段,心肌细胞和毛坯是通过考虑心肌到骨膜细胞连接的形状变异性和插入式椎间盘而产生的。然后,将薄板汇总为感兴趣的方向。我们的形态计量学研究表明,数值和真实(文献)心肌细胞数据的体积,长度以及一级和次要轴的分布之间没有显着差异($ p> 0.01 $)。结构相关性分析证实了硅内组织与实际组织的无序性相同。此外,模拟的螺旋角(HA)和输入HA(参考值)之间的绝对角度差异($ 4.3^\ circ \ circ \ pm 3.1^\ circ $)在使用实验性心动扩散张量(CDTI)和组织值(参考值)(holmes and(holmes)(holmes)(holmes)中,与测量的HA之间的绝对角度差异很好地达到了良好的一致性。 ($ 3.7^\ circ \ pm6.4^\ circ $)和(Scollan等,1998)($ 4.9^\ circ \ pm 14.6^\ circ $)。使用结构张量成像(黄金标准)和实验性CDTI,输入和模拟CDTI的特征向量和模拟CDTI的角度之间的角度距离小于测量角度之间的角度距离。这些结果证实,所提出的方法比以前的研究可以为心肌产生更丰富的数值幻象。

In silico tissue models enable evaluating quantitative models of magnetic resonance imaging. This includes validating and sensitivity analysis of imaging biomarkers and tissue microstructure parameters. We propose a novel method to generate a realistic numerical phantom of myocardial microstructure. We extend previous studies accounting for the cardiomyocyte shape variability, water exchange between the cardiomyocytes (intercalated discs), myocardial microstructure disarray, and four sheetlet orientations. In the first stage of the method, cardiomyocytes and sheetlets are generated by considering the shape variability and intercalated discs in cardiomyocyte-to-cardiomyocyte connections. Sheetlets are then aggregated and oriented in the directions of interest. Our morphometric study demonstrates no significant difference ($p>0.01$) between the distribution of volume, length, and primary and secondary axes of the numerical and real (literature) cardiomyocyte data. Structural correlation analysis validates that the in-silico tissue is in the same class of disorderliness as the real tissue. Additionally, the absolute angle differences between the simulated helical angle (HA) and input HA (reference value) of the cardiomyocytes ($4.3^\circ\pm 3.1^\circ$) demonstrate a good agreement with the absolute angle difference between the measured HA using experimental cardiac diffusion tensor imaging (cDTI) and histology (reference value) reported by (Holmes et al., 2000) ($3.7^\circ\pm6.4^\circ$) and (Scollan et al., 1998) ($4.9^\circ\pm 14.6^\circ$). The angular distance between eigenvectors and sheetlet angles of the input and simulated cDTI is smaller than those between measured angles using structural tensor imaging (gold standard) and experimental cDTI. These results confirm that the proposed method can generate richer numerical phantoms for the myocardium than previous studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源