论文标题
关于嘈杂的随机几何图的集团数量
On the clique number of noisy random geometric graphs
论文作者
论文摘要
Let $G_n$ be a random geometric graph, and then for $q,p \in [0,1)$ we construct a "$(q,p)$-perturbed noisy random geometric graph" $G_n^{q,p}$ where each existing edge in $G_n$ is removed with probability $q$, while and each non-existent edge in $G_n$ is inserted with probability $p$.我们在数字$ω\ left(g_n^{q,p} \ right)$上给出了渐近的紧密界限。
Let $G_n$ be a random geometric graph, and then for $q,p \in [0,1)$ we construct a "$(q,p)$-perturbed noisy random geometric graph" $G_n^{q,p}$ where each existing edge in $G_n$ is removed with probability $q$, while and each non-existent edge in $G_n$ is inserted with probability $p$. We give asymptotically tight bounds on the clique number $ω\left(G_n^{q,p}\right)$ for several regimes of parameter.