论文标题

关于嘈杂的随机几何图的集团数量

On the clique number of noisy random geometric graphs

论文作者

Kahle, Matthew, Tian, Minghao, Wang, Yusu

论文摘要

Let $G_n$ be a random geometric graph, and then for $q,p \in [0,1)$ we construct a "$(q,p)$-perturbed noisy random geometric graph" $G_n^{q,p}$ where each existing edge in $G_n$ is removed with probability $q$, while and each non-existent edge in $G_n$ is inserted with probability $p$.我们在数字$ω\ left(g_n^{q,p} \ right)$上给出了渐近的紧密界限。

Let $G_n$ be a random geometric graph, and then for $q,p \in [0,1)$ we construct a "$(q,p)$-perturbed noisy random geometric graph" $G_n^{q,p}$ where each existing edge in $G_n$ is removed with probability $q$, while and each non-existent edge in $G_n$ is inserted with probability $p$. We give asymptotically tight bounds on the clique number $ω\left(G_n^{q,p}\right)$ for several regimes of parameter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源