论文标题
基于双向加权链的三个振荡器的偏置网络中的部分同步和社区转换及其分析
Partial synchronization and community switching in phase-oscillator networks and its analysis based on a bidirectional, weighted chain of three oscillators
论文作者
论文摘要
复杂的网络通常具有根据网络连接定义的社区。当动态在网络中发生时,也可以考虑动态社区。即,一组显示类似动力学过程的节点。我们在分析和数值上研究了动态群落结构的发展,在该结构中,社区被称为相位振荡器网络中频率同步的一组节点。我们首先证明,使用一些示例网络,当网络连接或交互强度变化时,社区结构会发生变化。特别是,我们发现社区切换,即,振荡器的一部分会改变它们同步的组,这些组发生在一系列参数中。然后,我们提出了一个三个振荡器模型:三个库拉莫托相振荡器的双向加权链,作为理解社区形成及其变化的理论框架。我们的分析表明,该模型显示了各种部分同步模式:具有相似固有频率的振荡器倾向于同步以弱耦合,而紧密连接的振荡器倾向于同步以进行强耦合。我们通过在弱耦合方面采用扰动方法和在强耦合方案中采用几何方法来获得临界耦合强度的近似表达式。此外,我们阐明了不同模式之间过渡的分叉类型。我们的理论可能与社区结构化网络相比,在更广泛的复杂网络中了解部分同步模式的发展可能很有用。
Complex networks often possess communities defined based on network connectivity. When dynamics undergo in a network, one can also consider dynamical communities; i.e., a group of nodes displaying a similar dynamical process. We have investigated both analytically and numerically the development of dynamical community structure, where the community is referred to as a group of nodes synchronized in frequency, in networks of phase oscillators. We first demonstrate that using a few example networks, the community structure changes when network connectivity or interaction strength is varied. In particular, we found that community switching, i.e., a portion of oscillators change the group to which they synchronize, occurs for a range of parameters. We then propose a three-oscillator model: a bidirectional, weighted chain of three Kuramoto phase oscillators, as a theoretical framework for understanding the community formation and its variation. Our analysis demonstrates that the model shows a variety of partially synchronized patterns: oscillators with similar natural frequencies tend to synchronize for weak coupling, while tightly connected oscillators tend to synchronize for strong coupling. We obtain approximate expressions for the critical coupling strengths by employing a perturbative approach in a weak coupling regime and a geometric approach in a strong coupling regimes. Moreover, we elucidate the bifurcation types of transitions between different patterns. Our theory might be useful for understanding the development of partially synchronized patterns in a wider class of complex networks than community structured networks.