论文标题

声子诱导的自旋松弛和脱碳的多体理论

Many-body theory of phonon-induced spin relaxation and decoherence

论文作者

Park, Jinsoo, Luo, Yao, Zhou, Jin-Jian, Bernardi, Marco

论文摘要

第一原理计算可以准确预测电子相互作用和动力学。但是,计算电子自旋动力学仍然具有挑战性。旋转轨道相互作用引起各种动力学现象,这些现象与声子(例如自旋进液和自旋E-PH散射),这些散射很难用当前的第一原理计算来描述。在这项工作中,我们通过计算自旋旋转相关函数及其由于E-PH相互作用而导致的旋转旋转相关函数及其顶点校正来研究一个严格的框架,以研究声子诱导的自旋松弛和反折叠。我们将此方法应用于模型系统,并开发了GAAS中自旋松弛的相应第一原理计算。我们的顶点校正形式主义被证明可以捕获Elliott-yafet,Dyakonov-perel和强大的指示机制 - 三种具有独特物理起源的独立旋转脱位方案,从而统一了他们的理论治疗和计算。我们的方法是一般的,可以在各种材料和设备中对自旋松弛,破坏性和运输的定量研究。

First-principles calculations enable accurate predictions of electronic interactions and dynamics. However, computing the electron spin dynamics remains challenging. The spin-orbit interaction causes various dynamical phenomena that couple with phonons, such as spin precession and spin-flip e-ph scattering, which are difficult to describe with current first-principles calculations. In this work, we show a rigorous framework to study phonon-induced spin relaxation and decoherence, by computing the spin-spin correlation function and its vertex corrections due to e-ph interactions. We apply this approach to a model system and develop corresponding first-principles calculations of spin relaxation in GaAs. Our vertex-correction formalism is shown to capture the Elliott-Yafet, Dyakonov-Perel, and strong-precession mechanisms - three independent spin decoherence regimes with distinct physical origins - thereby unifying their theoretical treatment and calculation. Our method is general and enables quantitative studies of spin relaxation, decoherence, and transport in a wide range of materials and devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源