论文标题
一对周期的限制大小的拉姆齐号
On the restricted size Ramsey number for a pair of cycles
论文作者
论文摘要
对于图形,$ h_1,h_2 $ by $ r^*(h_1,h_2)$我们表示$ r(h_1,h_2)$ vertices中图$ g $中的最小边数,这样$ g \ to(h_1,h_2)$。我们表明,对于每对自然数量$ k,n $,$ k \ le n $,其中$ k $是奇怪的,$ n $足够大,我们有$$ r^*(c_n,c_k)= \ lceil(n+1)(2n-1)(2n-1)/2
For graphs $H_1,H_2$ by $r^*(H_1,H_2)$ we denote the minimum number of edges in a graph $G$ on $r(H_1,H_2)$ vertices such that $G\to (H_1,H_2)$. We show that for each pair of natural numbers $k,n$, $k\le n$, where $k$ is odd and $n$ is large enough, we have $$r^*(C_n,C_k)=\lceil (n+1)(2n-1)/2\rceil \,.$$