论文标题

通过最佳资源分配在量子干涉仪中保护噪声

Protection of noise squeezing in a quantum interferometer with optimal resource allocation

论文作者

Huang, Wenfeng, Liang, Xinyun, Zhu, Baiqiang, Yan, Yuhan, Yuan, Chun-Hua, Zhang, Weiping, Chen, Liqing

论文摘要

干涉仪对于精确测量至关重要,包括重力波,激光范围,雷达和成像。相位灵敏度(核心参数)可以使用量子态使用量子量限制(SQL)。但是,量子状态高度脆弱,并随着损失而迅速降解。我们使用具有可变分割比的光束分离器设计和演示量子干涉仪,以保护量子资源免受环境影响。最佳相位灵敏度可以达到系统的量子cramér-rao结合。该量子干涉仪可以大大降低量子测量中的量子源需求。从理论上讲,具有66.6%的损失率,灵敏度只能使用当前干涉仪的6.0 dB挤压量子资源来破坏SQL,而不是使用常规的挤压量子量的Mach-Zehnder Interferoins使用当前干涉仪而不是24 dB挤压的量子资源。在实验中,当使用2.0 dB挤压真空状态时,当优化损失率从0%变为0%到90%时,灵敏度增强保持〜1.6 dB,这表明量子资源在实际应用中受损失的存在得到了极大的保护。该策略可以打开一种方法,以保留量子信息处理和量子精度测量的量子优势。

Interferometers are crucial for precision measurements, including gravitational waves, laser ranging, radar, and imaging. The phase sensitivity, the core parameter, can be quantum-enhanced to break the standard quantum limit (SQL) using quantum states. However, quantum states are highly fragile and quickly degrade with losses. We design and demonstrate a quantum interferometer utilizing a beam splitter with a variable splitting ratio to protect the quantum resource against environmental impacts. The optimal phase sensitivity can reach the quantum Cramér-Rao bound of the system. This quantum interferometer can greatly reduce the quantum source requirements in quantum measurements. In theory, with a 66.6% loss rate, the sensitivity can break the SQL using only a 6.0 dB squeezed quantum resource with the current interferometer rather than a 24 dB squeezed quantum resource with a conventional squeezing-vacuum-injected Mach-Zehnder interferometer. In experiments, when using a 2.0 dB squeezed vacuum state, the sensitivity enhancement remains at ~1.6 dB via optimizing the first splitting ratio when the loss rate changes from 0% to 90%, indicating that the quantum resource is excellently protected with the existence of losses in practical applications. This strategy could open a way to retain quantum advantages for quantum information processing and quantum precision measurement in lossy environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源