论文标题
具有较强连接特性的拓扑组
Topological Groups with Strong Disconnectedness Properties
论文作者
论文摘要
考虑到基本上是断开连接的拓扑组,$ f $ - 或$ f'$ - 空间而不是$ p $ - 空格。尤其是事实证明,Lindelöf的存在基本上是脱节的拓扑组,而不是$ p $ - 空间等同于布尔人的存在基本上是脱节的,基本上是脱节的lindelöf群体的可数值伪charlacter组,而不是$ $ $ - $ - $ - $ - $ - $ - $ - $ - $ - $ - 布尔$ f'$ - 不是$ p $ - 空间的组等于$ω$上的选择性超级滤波器。
Topological groups whose underlying spaces are basically disconnected, $F$-, or $F'$-spaces but not $P$-spaces are considered. It is proved, in particular, that the existence of a Lindelöf basically disconnected topological group which is not a $P$-space is equivalent to the existence of a Boolean basically disconnected Lindelöf group of countable pseudocharacter, that free and free Abelian topological groups of zero-dimensional non-$P$-spaces are never $F'$-spaces, and that the existence of a free Boolean $F'$-group which is not a $P$-space is equivalent to that of selective ultrafilters on $ω$.