论文标题

在答案集程序中建立强大的一致性

On Establishing Robust Consistency in Answer Set Programs

论文作者

Thevapalan, Andre, Kern-Isberner, Gabriele

论文摘要

实际应用程序中使用的答案集程序通常要求该程序可与不同的输入数据一起使用。但是,这通常会导致矛盾的陈述,从而导致不一致的程序。计划中潜在矛盾的原因是矛盾的规则。在本文中,我们展示了如何确保程序$ \ Mathcal {p} $在给定任何允许的输入数据的情况下仍然是非矛盾的。为此,我们介绍了解决冲突的$λ$扩展名的概念。冲突规则$ r $的解决冲突的$λ$ - extension是一组$λ$的(默认)文字,因此将$ r $的尸体扩大到$λ$的情况下,一次将$ r $的所有冲突分解为$ r $。我们调查了合适的$λ$延伸应具有并在此基础上构建的属性,我们制定了一种策略,以计算$ \ Mathcal {p} $中每个冲突规则的所有此类解决冲突的$λ$扩展。我们表明,通过实施冲突解决过程,该过程使用$λ$延伸来连续解决冲突,最终产生了一个程序,该程序在鉴于任何允许的输入数据集,该程序仍然是非矛盾的。

Answer set programs used in real-world applications often require that the program is usable with different input data. This, however, can often lead to contradictory statements and consequently to an inconsistent program. Causes for potential contradictions in a program are conflicting rules. In this paper, we show how to ensure that a program $\mathcal{P}$ remains non-contradictory given any allowed set of such input data. For that, we introduce the notion of conflict-resolving $λ$- extensions. A conflict-resolving $λ$-extension for a conflicting rule $r$ is a set $λ$ of (default) literals such that extending the body of $r$ by $λ$ resolves all conflicts of $r$ at once. We investigate the properties that suitable $λ$-extensions should possess and building on that, we develop a strategy to compute all such conflict-resolving $λ$-extensions for each conflicting rule in $\mathcal{P}$. We show that by implementing a conflict resolution process that successively resolves conflicts using $λ$-extensions eventually yields a program that remains non-contradictory given any allowed set of input data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源