论文标题

查看不同的视图:多功能回归引导的单元格实例分割

Look in Different Views: Multi-Scheme Regression Guided Cell Instance Segmentation

论文作者

Li, Menghao, Feng, Wenquan, Lyu, Shuchang, Chen, Lijiang, Zhao, Qi

论文摘要

单元实例分割是一项旨在旨在对图像中每个单元格的联合检测和分割的新任务。最近,在此任务中应用了许多实例细分方法。尽管取得了巨大的成功,但仍然存在两个主要弱点,这是由于定位细胞中心点的不确定性而引起的。首先,可以很容易地将密集的填充细胞识别到一个细胞中。其次,细胞的细胞很容易被识别为两个细胞。为了克服这两个弱点,我们提出了一个基于多控制回归指导的新细胞实例分割网络。借助多功能回归指导,该网络具有在不同视图中查看每个单元的能力。具体而言,我们首先提出了一种高斯指导注意机制,以使用高斯标签来指导网络的注意力。然后,我们提出了一个点回归模块,以帮助细胞中心的回归。最后,我们利用上述两个模块的输出来进一步指导实例分割。借助多机回归指导,我们可以充分利用不同区域(尤其是细胞中心区域)的特征。我们在基准数据集,DSB2018,CA2.5和SCIS上进行了广泛的实验。令人鼓舞的结果表明,我们的网络实现了SOTA(最先进的)性能。在DSB2018和CA2.5上,我们的网络超过1.2%(AP50)。尤其是在SCIS数据集上,我们的网络的性能较大(AP50高3.0%)。可视化和分析进一步证明了我们提出的方法是可以解释的。

Cell instance segmentation is a new and challenging task aiming at joint detection and segmentation of every cell in an image. Recently, many instance segmentation methods have applied in this task. Despite their great success, there still exists two main weaknesses caused by uncertainty of localizing cell center points. First, densely packed cells can easily be recognized into one cell. Second, elongated cell can easily be recognized into two cells. To overcome these two weaknesses, we propose a novel cell instance segmentation network based on multi-scheme regression guidance. With multi-scheme regression guidance, the network has the ability to look each cell in different views. Specifically, we first propose a gaussian guidance attention mechanism to use gaussian labels for guiding the network's attention. We then propose a point-regression module for assisting the regression of cell center. Finally, we utilize the output of the above two modules to further guide the instance segmentation. With multi-scheme regression guidance, we can take full advantage of the characteristics of different regions, especially the central region of the cell. We conduct extensive experiments on benchmark datasets, DSB2018, CA2.5 and SCIS. The encouraging results show that our network achieves SOTA (state-of-the-art) performance. On the DSB2018 and CA2.5, our network surpasses previous methods by 1.2% (AP50). Particularly on SCIS dataset, our network performs stronger by large margin (3.0% higher AP50). Visualization and analysis further prove that our proposed method is interpretable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源