论文标题

分段单调间隔图的关节奇迹性

Joint ergodicity of piecewise monotone interval maps

论文作者

Bergelson, Vitaly, Son, Younghwan

论文摘要

For $i = 0, 1, 2, \dots, k$, let $μ_i$ be a Borel probability measure on $[0,1]$ which is equivalent to Lebesgue measure $λ$ and let $T_i:[0,1] \rightarrow [0,1]$ be $μ_i$-preserving ergodic transformations. 我们说转换$ t_0,t_1,\ dots,t_k $对于$(λ;μ_0,μ_1,\ dots,μ_k)$均匀地共同共同ergodic $ \ lim \ limits_ {n -m \ rightarrow \ infty} \ frac {1} {n-m} {n-m} \ sum \ limits_ {n = m}^{n-1} f_0(t_0^{n} {n} x) \ prod_ {i = 0}^k \ int f_i \,dμ_i\ quad \ text {in} l^2(λ)。 \] 我们建立了统一关节性牙的方便标准,并获得了许多应用,其中大多数涉及间隔图。这是一个这样的应用程序的描述。令$ t_g $表示高斯地图,$ t_g(x)= \ frac {1} {x} \,(\ bmod \,1)$,对于$β> 1 $,令$t_β$表示$β$ - $β$ - 转移由$t_βx =βx=βx\ bmod,\ bmod,令$ t_0 $为一个千古的间隔交换转换。令$β_1,\ cdots,β_k$是$β_I> 1 $的不同实数,并假设所有$ i = 1、2,\ dots,k $,$ \logβ_i\ ne \ ne \ frac {π^2} {6 \ log 2} $。然后,对于任何$ f_ {0},f_1,f_ {2},\ dots,f_ {k+1} \ in l^{\ infty}(λ)$,\ begin {equination*} \ begin*} \ begin {split {splite} \ sum \ limits_ {n = m}^{n-1}&f_ {0}(t_0^n x)\ cdot f_ {1}(t_ {β_1}^n x)\ cdots f_ {k {k}(t_ &= \ int f_ {0} \,dλ\ cdot \ prod_ {i = 1}^k \ int f_ {i} \,dμ_{β_i} \ cdot \ cdot \ cdot \ cdot \ cdot \ cdot \ int f_ {k+1} \ end {split} \ end {equation*} 我们还研究关节混合的现象。除其他事项外,我们还建立了偏斜帐篷地图的关节混合,并限制了有限的蓝皮产品对单位圆圈的限制。

For $i = 0, 1, 2, \dots, k$, let $μ_i$ be a Borel probability measure on $[0,1]$ which is equivalent to Lebesgue measure $λ$ and let $T_i:[0,1] \rightarrow [0,1]$ be $μ_i$-preserving ergodic transformations. We say that transformations $T_0, T_1, \dots, T_k$ are uniformly jointly ergodic with respect to $(λ; μ_0, μ_1, \dots, μ_k)$ if for any $f_0, f_1, \dots, f_k \in L^{\infty}$, \[ \lim\limits_{N -M \rightarrow \infty} \frac{1}{N-M } \sum\limits_{n=M}^{N-1} f_0 ( T_0^{n} x) \cdot f_1 (T_1^n x) \cdots f_k (T_k^n x) = \prod_{i=0}^k \int f_i \, d μ_i \quad \text{ in } L^2(λ). \] We establish convenient criteria for uniform joint ergodicity and obtain numerous applications, most of which deal with interval maps. Here is a description of one such application. Let $T_G$ denote the Gauss map, $T_G(x) = \frac{1}{x} \, (\bmod \, 1)$, and, for $β>1$, let $T_β$ denote the $β$-transformation defined by $T_β x = βx \, (\bmod \,1)$. Let $T_0$ be an ergodic interval exchange transformation. Let $β_1 , \cdots , β_k$ be distinct real numbers with $β_i >1$ and assume that $\log β_i \ne \frac{π^2}{6 \log 2}$ for all $i = 1, 2, \dots, k$. Then for any $f_{0}, f_1, f_{2}, \dots, f_{k+1} \in L^{\infty} (λ)$, \begin{equation*} \begin{split} \lim\limits_{N -M \rightarrow \infty} \frac{1}{N -M } \sum\limits_{n=M}^{N-1} & f_{0} (T_0^n x) \cdot f_{1} (T_{β_1}^n x) \cdots f_{k} (T_{β_k}^n x) \cdot f_{k+1} (T_G^n x) &= \int f_{0} \, d λ\cdot \prod_{i=1}^k \int f_{i} \, d μ_{β_i} \cdot \int f_{k+1} \, d μ_G \quad \text{in } L^{2}(λ). \end{split} \end{equation*} We also study the phenomenon of joint mixing. Among other things we establish joint mixing for skew tent maps and for restrictions of finite Blaschke products to the unit circle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源