论文标题
关于wronskians和$ qq $ - 系统
On Wronskians and $qq$-systems
论文作者
论文摘要
我们从新的几何学角度讨论了$ qq $ - 系统,这是扭曲Gaudin模型的Bethe Ansatz方程的功能形式。我们使用$ g $ -wronskians的概念,这些概念是投影线上的主要$ g $捆绑的某些Meromorthic部分。在这种情况下,$ qq $ - 系统类似于其差异类似物,被认为是$ g $ -Wronskian的广义未成年人之间的关系。我们解释了$ g $ -Wronskians和Twisted $ g $ - oper Connections之间的链接,这是$ qq $ - 系统的传统来源。
We discuss the $qq$-systems, the functional form of the Bethe ansatz equations for the twisted Gaudin model from a new geometric point of view. We use a concept of $G$-Wronskians, which are certain meromorphic sections of principal $G$-bundles on the projective line. In this context, the $qq$-system, similar to its difference analog, is realized as the relation between generalized minors of the $G$-Wronskian. We explain the link between $G$-Wronskians and twisted $G$-oper connections, which are the traditional source for the $qq$-systems.