论文标题

反合:探索Convnet的参数有效传输学习

Conv-Adapter: Exploring Parameter Efficient Transfer Learning for ConvNets

论文作者

Chen, Hao, Tao, Ran, Zhang, Han, Wang, Yidong, Li, Xiang, Ye, Wei, Wang, Jindong, Hu, Guosheng, Savvides, Marios

论文摘要

尽管参数有效调整(PET)方法在自然语言处理(NLP)任务的变压器体系结构(NLP)任务上显示出很大的潜力,但它们在大规模转向的效果上仍然对计算机视觉(CV)任务进行了研究。本文提出了Conv-Adapter,这是一种专为CONCNET设计的PET模块。 Conv-Adapter是轻量重量,可转移的域和架构敏捷,在不同的任务上具有广义性能。当转移下游任务时,Conv-Adapter将特定于任务的特征调制到骨干的中间表示,同时保持预先训练的参数冻结。通过仅引入少量可学习的参数,例如,Resnet50的完整微调参数仅3.5%。它也可以用于基于变压器的骨干。 Conv-Adapter的表现优于先前的宠物基线方法,并且可以在各个域的23个分类任务上实现可比或超过完整的微调性能。它还在少量射击分类中表现出卓越的性能,平均利润率为3.39%。除分类外,Conv-Adapter可以推广到检测和细分任务,其参数降低了50%以上,但性能与传统的完整微调相当。

While parameter efficient tuning (PET) methods have shown great potential with transformer architecture on Natural Language Processing (NLP) tasks, their effectiveness with large-scale ConvNets is still under-studied on Computer Vision (CV) tasks. This paper proposes Conv-Adapter, a PET module designed for ConvNets. Conv-Adapter is light-weight, domain-transferable, and architecture-agnostic with generalized performance on different tasks. When transferring on downstream tasks, Conv-Adapter learns tasks-specific feature modulation to the intermediate representations of backbones while keeping the pre-trained parameters frozen. By introducing only a tiny amount of learnable parameters, e.g., only 3.5% full fine-tuning parameters of ResNet50. It can also be applied for transformer-based backbones. Conv-Adapter outperforms previous PET baseline methods and achieves comparable or surpasses the performance of full fine-tuning on 23 classification tasks of various domains. It also presents superior performance on the few-shot classification with an average margin of 3.39%. Beyond classification, Conv-Adapter can generalize to detection and segmentation tasks with more than 50% reduction of parameters but comparable performance to the traditional full fine-tuning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源