论文标题

动量表示中狄拉克方程的关系分析

Relational Analysis of Dirac Equation in Momentum Representation

论文作者

Solov'yov, Anton V.

论文摘要

就时空几何和物理相互作用的关系方法而言,我们表明,可以从两个抽象集的元素之间的复杂关系(BSCR)(BSCR)开始,可以从动量表示中进行自由费用的狄拉克方程。通过执行的派生,我们表明,不需要先验的4维伪欧亚人动量空间,而自然而然地从对相当通用特征(2-Spinor代数)的考虑中出现。为带正能量的速度和动量的任意分布构建了双波波函数。特别注意应提出的物理假设以实现施工。

In terms of the relational approach to space-time geometry and physical interactions, we show that the Dirac equation for a free fermion in the momentum representation can be obtained starting from a binary system of complex relations (BSCR) between elements of two abstract sets. With the derivation performed we show that the 4-dimensional pseudo-Euclidean momentum space is not needed a priori but naturally emerges from considerations of rather general character (2-spinor algebra). A bispinor wave function is constructed for a fermion with positive energy and an arbitrary distribution of momenta. Special attention is paid to physical assumptions that should be made to enable the construction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源