论文标题
分类费用的玩具模型
A toy model for categorical charges
论文作者
论文摘要
我们考虑了三个空间维度的较高量规拓扑模型,其输入数据是2组编码0形式$ \ Mathbb Z_2 $ - 和1形$ \ MathBB Z_3 $ -SMYMETRY的混合。我们研究该理论对对称性边界的激发内容。我们表明,边界运算符被组织成2组的2种分量的融合2类。这些可以解释为有效边界模型的分类费用,该模型从批量拓扑顺序继承了全局2组对称性。有趣的是,我们发现某些简单的2个陈述物理解释为内在激发和凝结缺陷的复合材料。
We consider a higher gauge topological model in three spatial dimensions whose input datum is a 2-group encoding the mixing of a 0-form $\mathbb Z_2$- and 1-form $\mathbb Z_3$-symmetry. We study the excitation content of the theory on the symmetry-preserving boundary. We show that boundary operators are organised into the fusion 2-category of 2-representations of the 2-group. These can be interpreted as categorical charges for an effective boundary model that inherits a global 2-group symmetry from the bulk topological order. Interestingly, we find that certain simple 2-representations are physically interpreted as composites of intrinsic excitations and condensation defects.