论文标题
$ \ hat {s \ ell}(n)$ module $ v(kλ_0)$的最大权重的多重性
Multiplicities of maximal weights of the $\hat{s\ell}(n) $-module $V(kΛ_0)$
论文作者
论文摘要
考虑使用null root $δ$,重量晶格$ p $和一组主导权重$ p^+$,请考虑使用null root $δ$,root $Δ$,affine lie代数$ \ hat {s \ ell}(n)$。令$ v(kλ_0),\,k \ in \ mathbb {z} _ {\ geq 1} $表示可集成的最高权重$ \ hat {s \ ell}(n)$ - 具有级别$ k \ geq 1 $ geq 1 $最高权重$kλ_0$的模块。令$ wt(v)$表示$ v(kλ_0)$的权重集。如果$+δ\ not \ wt(v)$中的$+δ\ not \,wt(v)$中的重量$μ\是最大权重。令$ max^+(kλ_0)= max(kλ_0)\ cap p^+$表示最大优势权重集,已知是有限集。在2014年,作者对集合$ max^+(kλ_0)$进行了完整描述。在随后的论文中,使用相关的晶体碱理论给出了$ max^+(kλ_0)$的某些子集的多重性。在本文中,$ \ hat {s \ ell}(n)$ -Module $ v(kλ_0)$的所有最大优势权重的多样性被赋予已知结果。
Consider the affine Lie algebra $\hat{s\ell}(n)$ with null root $δ$, weight lattice $P$ and set of dominant weights $P^+$. Let $V(kΛ_0), \, k \in \mathbb{Z}_{\geq 1}$ denote the integrable highest weight $\hat{s\ell}(n)$-module with level $k \geq 1$ highest weight $kΛ_0$. Let $wt(V)$ denote the set of weights of $V(kΛ_0)$. A weight $μ\in wt(V)$ is a maximal weight if $μ+ δ\not\in wt(V)$. Let $max^+(kΛ_0)= max(kΛ_0)\cap P^+$ denote the set of maximal dominant weights which is known to be a finite set. In 2014, the authors gave the complete description of the set $max^+(kΛ_0)$. In subsequent papers the multiplicities of certain subsets of $max^+(kΛ_0)$ were given in terms of some pattern-avoiding permutations using the associated crystal base theory. In this paper the multiplicity of all the maximal dominant weights of the $\hat{s\ell}(n) $-module $V(kΛ_0)$ are given generalizing the known results.