论文标题
严格增加双对称图的二分法结果
A dichotomy result for strictly increasing bisymmetric maps
论文作者
论文摘要
在本文中,我们显示了该方法的一些显着后果,该方法证明了每个双相对称,反射性,严格的单调二进制图在适当的间隔内都是连续的,尤其是准算术平均值。现在,我们证明可以通过仅假设一个间隔的一对不同点对称性来削弱对称条件的方式来完善该结果。
In this paper we show some remarkable consequences of the method which proves that every bisymmetric, symmetric, reflexive, strictly monotonic binary map on a proper interval is continuous, in particular it is a quasi-arithmetic mean. Now we demonstrate that this result can be refined in the way that the symmetry condition can be weakened by assuming symmetry only for a pair of distinct points of an interval.