论文标题
用稀疏注释学习语义通信
Learning Semantic Correspondence with Sparse Annotations
论文作者
论文摘要
找到密集的语义对应是计算机视觉中的一个基本问题,由于背景混乱,极端的阶层变化以及严重缺乏地面真理,在复杂的场景中仍然具有挑战性。在本文中,我们旨在通过丰富稀疏关键点注释中的监督信号来应对语义通信中标签稀疏性的挑战。为此,我们首先提出了一个教师学习范式,以产生著名的伪标签,然后制定两种新颖的伪造策略。特别是,我们在稀疏注释周围使用空间先验来抑制嘈杂的伪标记。此外,我们还引入了损失驱动的动态标签选择策略,用于标签denoisising。我们通过两种级别的学习策略来实例化范式:一个离线教师设置和共同的在线教师设置。我们的方法在三个具有挑战性的基准标准方面取得了显着的改进,并建立了新的最先进。项目页面:https://shuaiyihuang.github.io/publications/scorrsan。
Finding dense semantic correspondence is a fundamental problem in computer vision, which remains challenging in complex scenes due to background clutter, extreme intra-class variation, and a severe lack of ground truth. In this paper, we aim to address the challenge of label sparsity in semantic correspondence by enriching supervision signals from sparse keypoint annotations. To this end, we first propose a teacher-student learning paradigm for generating dense pseudo-labels and then develop two novel strategies for denoising pseudo-labels. In particular, we use spatial priors around the sparse annotations to suppress the noisy pseudo-labels. In addition, we introduce a loss-driven dynamic label selection strategy for label denoising. We instantiate our paradigm with two variants of learning strategies: a single offline teacher setting, and mutual online teachers setting. Our approach achieves notable improvements on three challenging benchmarks for semantic correspondence and establishes the new state-of-the-art. Project page: https://shuaiyihuang.github.io/publications/SCorrSAN.