论文标题

预测:时间问题回答和预测时间知识图的基准

ForecastTKGQuestions: A Benchmark for Temporal Question Answering and Forecasting over Temporal Knowledge Graphs

论文作者

Ding, Zifeng, Li, Zongyue, Qi, Ruoxia, Wu, Jingpei, He, Bailan, Ma, Yunpu, Meng, Zhao, Chen, Shuo, Liao, Ruotong, Han, Zhen, Tresp, Volker

论文摘要

关于时间知识图(TKGQA)的问题回答最近发现了兴趣的日益增加。 TKGQA需要时间推理技术来从时间知识库中提取相关信息。唯一现有的TKGQA数据集,即cronquestions,由基于固定时间段的事实组成的时间问题,在固定时间段内,跨越同一时期的时间知识图(TKG)可以充分使用用于答案推断,从而允许TKGQA模型甚至将来使用过去的知识来基于过去的事实回答问题。但是,在现实世界的情况下,鉴于到目前为止的知识也很常见,我们希望TKGQA系统回答询问未来的问题。随着人类不断寻求未来计划,建立用于回答此类预测问题的TKGQA系统很重要。然而,这在先前的研究中仍未得到探索。在本文中,我们提出了一项新任务:预测问题对时间知识图的回答。我们还为此任务提出了一个大规模的TKGQA基准数据集,即预测。它包括三种类型的问题,即实体预测,是不是和事实推理问题。对于我们数据集中的每个预测问题,QA模型只能在给定问题中注释的时间戳以进行答案推理之前访问TKG信息。我们发现,最先进的TKGQA方法在预测问题上的表现较差,并且他们无法回答不是问题和事实推理问题。为此,我们提出了一个TKGQA模型预测,该模型采用TKG预测模块进行将来推断,以回答所有三种类型的问题。实验结果表明,预测到实体预测问题的最新方法优于最近的TKGQA方法,并且在回答其他两种类型的问题方面也显示出很大的有效性。

Question answering over temporal knowledge graphs (TKGQA) has recently found increasing interest. TKGQA requires temporal reasoning techniques to extract the relevant information from temporal knowledge bases. The only existing TKGQA dataset, i.e., CronQuestions, consists of temporal questions based on the facts from a fixed time period, where a temporal knowledge graph (TKG) spanning the same period can be fully used for answer inference, allowing the TKGQA models to use even the future knowledge to answer the questions based on the past facts. In real-world scenarios, however, it is also common that given the knowledge until now, we wish the TKGQA systems to answer the questions asking about the future. As humans constantly seek plans for the future, building TKGQA systems for answering such forecasting questions is important. Nevertheless, this has still been unexplored in previous research. In this paper, we propose a novel task: forecasting question answering over temporal knowledge graphs. We also propose a large-scale TKGQA benchmark dataset, i.e., ForecastTKGQuestions, for this task. It includes three types of questions, i.e., entity prediction, yes-no, and fact reasoning questions. For every forecasting question in our dataset, QA models can only have access to the TKG information before the timestamp annotated in the given question for answer inference. We find that the state-of-the-art TKGQA methods perform poorly on forecasting questions, and they are unable to answer yes-no questions and fact reasoning questions. To this end, we propose ForecastTKGQA, a TKGQA model that employs a TKG forecasting module for future inference, to answer all three types of questions. Experimental results show that ForecastTKGQA outperforms recent TKGQA methods on the entity prediction questions, and it also shows great effectiveness in answering the other two types of questions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源