论文标题

亚驻膜,亚组和奇异性

Subalgebras, subgroups, and singularity

论文作者

Amrutam, Tattwamasi, Hartman, Yair

论文摘要

本文涉及某些组的正常亚组定理的非共同类似物。受Kalantar-Panagopoulos的启发,我们表明所有$γ$ -INVARIANT的子代理$lγ$和$ C^*_ r(γ)$均为($γ$ - )可共符。我们与之合作的群体满足了Bader-Boutonnet-Houdayer-Peterson中描述的奇异现象。奇异性的设置使我们能够获得$γ$ -INVARIANT中级von Neumann subalgebras $ l^{\ infty}(x,X,ξ)\ subset \ subset \ Mathcal {m} \ subset l^{\ subset l^{\ infty}(\ infty}(x,x,x,x,e Emc,eC,eC,eC)

This paper concerns the non-commutative analog of the Normal Subgroup Theorem for certain groups. Inspired by Kalantar-Panagopoulos, we show that all $Γ$-invariant subalgebras of $LΓ$ and $C^*_r(Γ)$ are ($Γ$-) co-amenable. The groups we work with satisfy a singularity phenomenon described in Bader-Boutonnet-Houdayer-Peterson. The setup of singularity allows us to obtain a description of $Γ$-invariant intermediate von Neumann subalgebras $L^{\infty}(X,ξ)\subset\mathcal{M}\subset L^{\infty}(X,ξ)\rtimesΓ$ in terms of the normal subgroups of $Γ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源