论文标题

关于Diophantine方程的解决方案$ \ MATHCAL {P} _M-L_N = C $

On solutions of the Diophantine equation $\mathcal{P}_m-L_n=c$

论文作者

Tiebekabe, Pagdame, Adonsou, Serge, Diouf, Ismaïla

论文摘要

\ noindent在本文中,我们确定所有整数$ c $至少两个表示形式为两个线性复发序列之间的差异。这是Pillai方程的变体。该方程是指数式的双方方程。我们的主要定理的证据使用了对数的线性形式,持续分数的属性以及在二磷酸近似中的Baker-Davenport减少方法的版本。

\noindent In this article, we determine all the integers $c$ having at least two representations as difference between two linear recurrent sequences. This is a variant of the Pillai's equation. This equation is an exponential Diophantine equation. The proof of our main theorem uses lower bounds for linear forms of logarithms, properties of continued fractions, and a version of the Baker-Davenport reduction method in Diophantine approximation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源