论文标题

通过提升来背包秘书

Knapsack Secretary Through Boosting

论文作者

Abels, Andreas, Ladewig, Leon, Schewior, Kevin, Stinzendörfer, Moritz

论文摘要

我们重新审视了背包秘书问题(Babaioff等人; 2007年),如果经典秘书问题的概括,其中项目的大小不同,如果它们的总尺寸不超过背包的容量$ b $,则可以选择多个项目。以前的作品显示竞争比率为$ 1/(10e)$(Babaioff等人),$ 1/8.06 $(Kesselheim等人; STOC 2014)和$ 1/6.65 $(Albers,Khan,Khan和Ladewig; ladewig; lade; 2019年)的一般问题,但没有确定的竞争能力比率的确定答案;最著名的不可能是从经典秘书问题继承的$ 1/e $。为了取得更大的质量进步,我们采取了正交的方法,并为特殊情况提供了明确的答案。 我们的主要结果是$ 1 $ - $ 2 $ -KKNAPSACK秘书问题,其中$ b = 2 $的特殊情况和所有物品的尺寸$ 1 $或2 $,可以说,对于秘书问题而言,最简单的有意义的概括是针对背包秘书秘书问题。我们的算法很简单:$ \ textit {boosts} $ size-$ 1 $项目的价值$α> 1 $,然后使用Albers,Khan和Ladewig的大小合理方法。我们通过非平地分析表明,此算法在$ 1/e $时达到$ 1/e $,并且仅当时仅为$ 1.40 \LessSimα\ leq e/(e-1)\ leq e/(e-1)\大约1.58 $。 为了了解一般情况,我们考虑了尺寸为$ 1 $和$ b $的情况,而$ b $很大。尽管在这种情况下是否可以达到$ 1/e $尚不清楚,但我们表明,仅基于项目值的相对等级的算法可以准确地达到$ 1/(E+1)$的竞争比率。为了显示不可能,我们使用秘书问题的因子线性计划的非平凡概括(Buchbinder,Jain和Singh; IPCO 2010)。

We revisit the knapsack-secretary problem (Babaioff et al.; APPROX 2007), a generalization of the classic secretary problem in which items have different sizes and multiple items may be selected if their total size does not exceed the capacity $B$ of a knapsack. Previous works show competitive ratios of $1/(10e)$ (Babaioff et al.), $1/8.06$ (Kesselheim et al.; STOC 2014), and $1/6.65$ (Albers, Khan, and Ladewig; APPROX 2019) for the general problem but no definitive answers for the achievable competitive ratio; the best known impossibility remains $1/e$ as inherited from the classic secretary problem. In an effort to make more qualitative progress, we take an orthogonal approach and give definitive answers for special cases. Our main result is on the $1$-$2$-knapsack secretary problem, the special case in which $B=2$ and all items have sizes $1$ or $2$, arguably the simplest meaningful generalization of the secretary problem towards the knapsack secretary problem. Our algorithm is simple: It $\textit{boosts}$ the value of size-$1$ items by a factor $α>1$ and then uses the size-oblivious approach by Albers, Khan, and Ladewig. We show by a nontrivial analysis that this algorithm achieves a competitive ratio of $1/e$ if and only if $1.40\lesssimα\leq e/(e-1)\approx 1.58$. Towards understanding the general case, we then consider the case when sizes are $1$ and $B$, and $B$ is large. While it remains unclear if $1/e$ can be achieved in that case, we show that algorithms based only on the relative ranks of the item values can achieve precisely a competitive ratio of $1/(e+1)$. To show the impossibility, we use a non-trivial generalization of the factor-revealing linear program for the secretary problem (Buchbinder, Jain, and Singh; IPCO 2010).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源