论文标题

在歧管假设下的降级扩散模型的收敛性

Convergence of denoising diffusion models under the manifold hypothesis

论文作者

De Bortoli, Valentin

论文摘要

denoisis扩散模型是最近在图像和音频合成中表现出最先进的性能的生成模型。这样的模型近似从目标分布到参考密度(通常是高斯)的正向噪声过程的时间反转。尽管有很强的经验结果,但对此类模型的理论分析仍然有限。特别是,所有当前方法都至关重要地假设目标密度允许密度W.R.T. Lebesgue测量。这不涵盖在较低维歧管上支持目标分布或通过某些经验分布给出的设置。在本文中,我们通过在更通用的环境中为扩散模型提供第一个收敛结果来弥合这一差距。特别是,我们在目标数据分布和扩散模型的生成分布之间的订单距离距离上提供了定量界限。

Denoising diffusion models are a recent class of generative models exhibiting state-of-the-art performance in image and audio synthesis. Such models approximate the time-reversal of a forward noising process from a target distribution to a reference density, which is usually Gaussian. Despite their strong empirical results, the theoretical analysis of such models remains limited. In particular, all current approaches crucially assume that the target density admits a density w.r.t. the Lebesgue measure. This does not cover settings where the target distribution is supported on a lower-dimensional manifold or is given by some empirical distribution. In this paper, we bridge this gap by providing the first convergence results for diffusion models in this more general setting. In particular, we provide quantitative bounds on the Wasserstein distance of order one between the target data distribution and the generative distribution of the diffusion model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源