论文标题
检查图形神经网络的晶体结构:捕获周期性的局限性和机会
Examining graph neural networks for crystal structures: limitations and opportunities for capturing periodicity
论文作者
论文摘要
从历史上看,材料信息学依赖于人类设计的材料结构描述。近年来,已经提出了图形神经网络(GNN),以从数据端到端产生用于下游预测任务的媒介嵌入的数据来学习晶体结构。但是,缺乏系统的方案来分析和了解GNN的捕获晶体结构的极限。在这项工作中,我们建议使用人类设计的描述符作为人类知识库,以测试Black-Box GNN是否可以捕获晶体结构的知识。我们发现,当前的最新GNN无法很好地捕获晶体结构的周期性,我们分析了GNN模型的局限性,这些模型从三个方面导致了这一失败:局部表达能力,远程信息和读取功能。我们提出了一种初始解决方案,即与GNNS杂交描述符,以改善GNN对材料特性的预测,尤其是声子内部能量和热容量,误差降低了90%,我们分析了改进预测的机制。所有分析都可以轻松扩展到其他深层表示学习模型,人体设计的描述符以及分子和无定形材料等系统。
Historically, materials informatics has relied on human-designed descriptors of materials structures. In recent years, graph neural networks (GNNs) have been proposed for learning representations of crystal structures from data end-to-end producing vectorial embeddings that are optimized for downstream prediction tasks. However, a systematic scheme is lacking to analyze and understand the limits of GNNs for capturing crystal structures. In this work, we propose to use human-designed descriptors as a bank of human knowledge to test whether black-box GNNs can capture the knowledge of crystal structures. We find that current state-of-the-art GNNs cannot capture the periodicity of crystal structures well, and we analyze the limitations of the GNN models that result in this failure from three aspects: local expressive power, long-range information, and readout function. We propose an initial solution, hybridizing descriptors with GNNs, to improve the prediction of GNNs for materials properties, especially phonon internal energy and heat capacity with 90% lower errors, and we analyze the mechanisms for the improved prediction. All the analysis can be extended easily to other deep representation learning models, human-designed descriptors, and systems such as molecules and amorphous materials.