论文标题

偶极子和四极非参节性孤立波

Dipole and quadrupole nonparaxial solitary waves

论文作者

Saha, Naresh, Roy, Barnana, Khare, Avinash

论文摘要

考虑到具有第三阶和第四阶分散和非kerr非线性的立方非线性Helmholtz方程,例如自我陡峭和自频移。该模型描述了在光学培养基中的非顺式超短脉冲传播,在存在源自慢慢变化的包膜近似失败的空间分散体的情况下。我们表明,该系统在一个时期内允许具有偶极结构的周期性(椭圆形)孤立波,并且还根据雅各比椭圆函数的模量参数的值在一段时间内从偶极子到四极杆结构。给出了这些解决方案存在的参数条件。检查了非帕克参数对诸如振幅,脉冲宽度和孤立波的速度等物理量的影响。发现通过调整非帕克斯参数,可以减速孤立波的速度。孤立波的稳定性和鲁棒性是数值讨论的。

The cubic nonlinear Helmholtz equation with third and fourth order dispersion and non-Kerr nonlinearity like the self steepening and the self frequency shift is considered. This model describes nonparaxial ultrashort pulse propagation in an optical medium in the presence of spatial dispersion originating from the failure of slowly varying envelope approximation. We show that this system admits periodic (elliptic) solitary waves with dipole structure within a period and also transition from dipole to quadrupole structure within a period depending on the value of the modulus parameter of Jacobi elliptic function. The parametric conditions to be satisfied for the existence of these solutions are given. The effect of the nonparaxial parameter on physical quantities like amplitude, pulse-width and speed of the solitary waves are examined. It is found that by adjusting the nonparaxial parameter, the speed of solitary waves can be decelerated. The stability and robustness of the solitary waves are discussed numerically.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源