论文标题

有效网络用于大脑质量分类

EfficientNet for Brain-Lesion classification

论文作者

Trinh, Quoc-Huy, Mau, Trong-Hieu Nguyen, Zosimov, Radmir, Nguyen, Minh-Van

论文摘要

在技​​术的发展中,脑部疾病的病例越来越多,提出了更多的治疗方法,并取得了积极的结果。但是,借助大脑质量,早期诊断可以改善成功治疗的可能性,并可以帮助患者更好地恢复治疗。源于这个原因,脑化是如今的医学图像分析中有争议的主题之一。随着体系结构的改善,提出了多种方法并获得竞争分数。在本文中,我们提出了一种技术,该技术将有效的网络用于3D图像,尤其是用于大脑质量分类任务解决方案的有效网络B0,并达到竞争分数。此外,我们还提出了使用多尺度效率网络对MRI数据切片进行分类的方法

In the development of technology, there are increasing cases of brain disease, there are more treatments proposed and achieved a positive result. However, with Brain-Lesion, the early diagnoses can improve the possibility for successful treatment and can help patients recuperate better. From this reason, Brain-Lesion is one of the controversial topics in medical images analysis nowadays. With the improvement of the architecture, there is a variety of methods that are proposed and achieve competitive scores. In this paper, we proposed a technique that uses efficient-net for 3D images, especially the Efficient-net B0 for Brain-Lesion classification task solution, and achieve the competitive score. Moreover, we also proposed the method to use Multiscale-EfficientNet to classify the slices of the MRI data

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源