论文标题

评估可信赖的AI时,使用句子嵌入和语义相似性来寻求共识

Using Sentence Embeddings and Semantic Similarity for Seeking Consensus when Assessing Trustworthy AI

论文作者

Vetter, Dennis, Tithi, Jesmin Jahan, Westerlund, Magnus, Zicari, Roberto V., Roig, Gemma

论文摘要

评估人工智能系统的可信赖性需要许多不同学科的知识。这些学科不一定在它们之间共享概念,并且可能使用具有不同含义的单词,甚至使用相同的单词不同。此外,来自不同学科的专家可能不知道其他学科中很容易使用的专业术语。因此,评估过程的核心挑战是确定来自不同学科的专家何时谈论相同的问题,但使用不同的术语。换句话说,问题是将问题描述(又称问题)分组为具有相同的语义含义,但使用略有不同的术语进行了描述。 在这项工作中,我们展示了我们如何采用自然语言处理的最新进展,即句子嵌入和语义文本相似性,以支持此识别过程,并弥合跨学科专家团队中评估人工智能系统可信赖的跨学科沟通差距。

Assessing the trustworthiness of artificial intelligence systems requires knowledge from many different disciplines. These disciplines do not necessarily share concepts between them and might use words with different meanings, or even use the same words differently. Additionally, experts from different disciplines might not be aware of specialized terms readily used in other disciplines. Therefore, a core challenge of the assessment process is to identify when experts from different disciplines talk about the same problem but use different terminologies. In other words, the problem is to group problem descriptions (a.k.a. issues) with the same semantic meaning but described using slightly different terminologies. In this work, we show how we employed recent advances in natural language processing, namely sentence embeddings and semantic textual similarity, to support this identification process and to bridge communication gaps in interdisciplinary teams of experts assessing the trustworthiness of an artificial intelligence system used in healthcare.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源