论文标题
量化和减轻对话推荐系统中的流行偏见
Quantifying and Mitigating Popularity Bias in Conversational Recommender Systems
论文作者
论文摘要
会话推荐系统(CRS)在通过多轮交互周期中准确捕获用户的当前和详细的偏好方面取得了巨大的成功,同时有效地指导用户进行更个性化的建议。也许令人惊讶的是,对话推荐系统可能会因受欢迎程度偏见而困扰,就像传统的推荐系统一样。在本文中,我们系统地研究了CRS中受欢迎程度偏见的问题。我们从曝光率,成功率和对话效用的观点中证明了现有最新的CRS中普及偏见的存在,并提出了专门为CRS设置设计的一系列受欢迎程度偏见指标。然后,我们引入了一个具有三个独特功能的偏见框架:(i)流行性意识到的学习,以减少对偏好预测的普及影响; (ii)通过属性映射嵌入重建的冷启动项目,以改善冷启动项目的建模; (iii)双政策学习,以更好地指导CRS在处理流行或不受欢迎的项目时。通过对两个常用的CRS数据集进行的大量实验,我们发现所提出的模型不合时宜的偏见框架不仅减轻了最先进的CRS中的普及偏见,而且可以提高整体建议性能。
Conversational recommender systems (CRS) have shown great success in accurately capturing a user's current and detailed preference through the multi-round interaction cycle while effectively guiding users to a more personalized recommendation. Perhaps surprisingly, conversational recommender systems can be plagued by popularity bias, much like traditional recommender systems. In this paper, we systematically study the problem of popularity bias in CRSs. We demonstrate the existence of popularity bias in existing state-of-the-art CRSs from an exposure rate, a success rate, and a conversational utility perspective, and propose a suite of popularity bias metrics designed specifically for the CRS setting. We then introduce a debiasing framework with three unique features: (i) Popularity-Aware Focused Learning to reduce the popularity-distorting impact on preference prediction; (ii) Cold-Start Item Embedding Reconstruction via Attribute Mapping, to improve the modeling of cold-start items; and (iii) Dual-Policy Learning, to better guide the CRS when dealing with either popular or unpopular items. Through extensive experiments on two frequently used CRS datasets, we find the proposed model-agnostic debiasing framework not only mitigates the popularity bias in state-of-the-art CRSs but also improves the overall recommendation performance.