论文标题

mordeephy:通过融合分类的脸部变形检测

MorDeephy: Face Morphing Detection Via Fused Classification

论文作者

Medvedev, Iurii, Shadmand, Farhad, Gonçalves, Nuno

论文摘要

当今面部识别领域,面部变形攻击检测(MAD)是最具挑战性的任务之一。在这项工作中,我们引入了一种新颖的深度学习策略,用于单个图像面部变形检测,这意味着在复杂的分类方案中歧视了变形的面部图像以及复杂的面部识别任务。它针对学习深度面部特征,这些面部特征带有有关这些功能真实性的信息。我们的工作还介绍了一些其他贡献:公众和易于使用的面部变形检测基准和我们野生数据集过滤策略的结果。我们称之为Mordeephy的方法实现了最先进的表现,并证明了将转变检测任务的任务推广到看不见的情况的重要能力。

Face morphing attack detection (MAD) is one of the most challenging tasks in the field of face recognition nowadays. In this work, we introduce a novel deep learning strategy for a single image face morphing detection, which implies the discrimination of morphed face images along with a sophisticated face recognition task in a complex classification scheme. It is directed onto learning the deep facial features, which carry information about the authenticity of these features. Our work also introduces several additional contributions: the public and easy-to-use face morphing detection benchmark and the results of our wild datasets filtering strategy. Our method, which we call MorDeephy, achieved the state of the art performance and demonstrated a prominent ability for generalising the task of morphing detection to unseen scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源