论文标题
要了解深度学习专家的混合
Towards Understanding Mixture of Experts in Deep Learning
论文作者
论文摘要
专家(MOE)层的混合物是由路由器控制的稀疏激活模型,在深度学习方面取得了巨大的成功。但是,对这种建筑的理解仍然难以捉摸。在本文中,我们正式研究MOE层如何改善神经网络学习的性能以及为什么混合模型不会崩溃成单个模型。我们的经验结果表明,基本问题的集群结构和专家的非线性与MOE的成功关键。为了进一步理解这一点,我们考虑了具有内在群集结构的具有挑战性的分类问题,这很难使用单个专家学习。然而,在MOE层的情况下,通过选择专家作为两层非线性卷积神经网络(CNN),我们表明问题可以成功地学习。此外,我们的理论表明,路由器可以学习群集中心的特征,这有助于将输入复杂问题分为单个专家可以征服的更简单的线性分类子问题。据我们所知,这是正式了解MOE层的深度学习机理的第一个结果。
The Mixture-of-Experts (MoE) layer, a sparsely-activated model controlled by a router, has achieved great success in deep learning. However, the understanding of such architecture remains elusive. In this paper, we formally study how the MoE layer improves the performance of neural network learning and why the mixture model will not collapse into a single model. Our empirical results suggest that the cluster structure of the underlying problem and the non-linearity of the expert are pivotal to the success of MoE. To further understand this, we consider a challenging classification problem with intrinsic cluster structures, which is hard to learn using a single expert. Yet with the MoE layer, by choosing the experts as two-layer nonlinear convolutional neural networks (CNNs), we show that the problem can be learned successfully. Furthermore, our theory shows that the router can learn the cluster-center features, which helps divide the input complex problem into simpler linear classification sub-problems that individual experts can conquer. To our knowledge, this is the first result towards formally understanding the mechanism of the MoE layer for deep learning.