论文标题
$γ_5$在维数正则化 - 使用BMHV方案的无弹力方法
$γ_5$ in dimensional regularization -- a no-compromise approach using the BMHV scheme
论文作者
论文摘要
众所周知,$γ_5$在$ d $尺寸中很难定义。传统的BMHV计划采用了非久经考验的$γ_5$。它的关键优势是数学一致性和全阶证明的存在。它的缺点是在手性仪表理论(如Electroweak标准模型)中量规不变性的伪造破坏。我们的研究计划旨在确定恢复量规不变性所需的特殊有限反处理,以允许BMHV方案的更直接应用和交叉检查替代方案。在这些程序中,我们介绍了关键的概念和方法,并概述了计算过程,并在2环层上提出了Abelian仪表理论的结果。一个重要的观察结果是结果的简单性 - 在2循环水平上,三种类型的对称性恢复反对者就足够了。
$γ_5$ is notoriously difficult to define in $D$ dimensions. The traditional BMHV scheme employs a non-anticommuting $γ_5$. Its key advantage is mathematical consistency and the existence of all-order proofs. Its disadvantage is the spurious breaking of gauge invariance in chiral gauge theories like the electroweak standard model. Our research programme aims to determine the special finite counterterms which are necessary to restore gauge invariance, to allow more straightforward applications of the BMHV scheme and to cross-check alternative schemes. In these proceedings we present the key concepts and methods, and we outline the calculational procedure and present results for an abelian gauge theory at the 2-loop level. An important observation is the simplicity of the results -- three types of symmetry-restoring counterterms are sufficient at the 2-loop level.