论文标题
从分布函数的矩到流体动力学:非统一情况
From moments of the distribution function to hydrodynamics: The non-conformal case
论文作者
论文摘要
我们使用具有有限粒子质量的系统的特殊分布函数来研究松弛时间近似中的一维增强式玻尔兹曼方程。只能保持与能量弹药张量的三个独立组件相对应的三个最低矩,可以将矩的无限层次结构截断。我们表明,这种三臂截断在简单的重新归一化后准确地重现了动力学方程的精确溶液,从而考虑了被忽视的较高力矩的影响。我们从三矩方程中得出了二阶以色列水力动力学方程,并表明,对于最相关的初始条件,这些方程的结果与三矩截断的结果相当,尽管准确性较低。我们将此特征归因于以下事实:以色列 - 史瓦特方程的结构与三矩截断的结构相似。特别是,在以色列 - 史图尔特方程中的松弛项的存在产生了一个早期制度,大约模仿了无碰撞状态。三矩截断与二阶非符号流体动力学的详细比较揭示了二阶传输系数的定义中的歧义。这些歧义会影响以色列 - 斯图尔特流体动力学再现动力学理论结果的能力。
We study the one-dimensional boost-invariant Boltzmann equation in the relaxation-time approximation using special moments of the distribution function for a system with a finite particle mass. The infinite hierarchy of moments can be truncated by keeping only the three lowest moments that correspond to the three independent components of the energy-momentum tensor. We show that such a three-moment truncation reproduces accurately the exact solution of the kinetic equation after a simple renormalization that takes into account the effects of the neglected higher moments. We derive second-order Israel-Stewart hydrodynamic equations from the three-moment equations, and show that, for most physically relevant initial conditions, these equations yield results comparable to those of the three-moment truncation, albeit less accurate. We attribute this feature to the fact that the structure of Israel-Stewart equations is similar to that of the three-moment truncation. In particular, the presence of the relaxation term in the Israel-Stewart equations, yields an early-time regime that mimics approximately the collisionless regime. A detailed comparison of the three-moment truncation with second-order non-conformal hydrodynamics reveals ambiguities in the definition of second-order transport coefficients. These ambiguities affect the ability of Israel-Stewart hydrodynamics to reproduce results of kinetic theory.