论文标题
语义交织的全球频道注意多标签遥感图像分类
Semantic Interleaving Global Channel Attention for Multilabel Remote Sensing Image Classification
论文作者
论文摘要
多标签遥感图像分类(MLRSIC)已获得越来越多的研究兴趣。将多个标签的互助关系作为其他信息有助于提高此任务的性能。当前方法着重于使用它来限制卷积神经网络(CNN)的最终特征输出。一方面,这些方法不会完全使用标签相关来形成特征表示。另一方面,它们增加了系统的标签噪声灵敏度,导致稳健性差。在本文中,提出了一种称为语义交织的全球通道注意力(Signa)的新颖方法。首先,根据数据集的统计信息获得标签共发生图。标签共发生图用作图形神经网络(GNN)的输入,以生成最佳特征表示。然后,语义特征和视觉特征交错,以指导图像从原始特征空间到具有嵌入式标签关系的语义特征空间的特征表达。 Signa在新的语义特征空间中引发了特征地图通道的全球关注,以提取更重要的视觉特征。提出了基于多头签名的功能自适应加权网络,以插件方式对任何CNN进行作用。对于遥感图像,可以通过将CNN插入浅层层来实现更好的分类性能。我们对三个数据集进行了广泛的实验比较:UCM数据集,AID数据集和DFC15数据集。实验结果表明,与最新方法(SOTA)方法相比,所提出的Signa具有出色的分类性能。值得一提的是,本文的代码将向社区开放,以进行可重复性研究。我们的代码可在https://github.com/kyle-one/signa上找到。
Multi-Label Remote Sensing Image Classification (MLRSIC) has received increasing research interest. Taking the cooccurrence relationship of multiple labels as additional information helps to improve the performance of this task. Current methods focus on using it to constrain the final feature output of a Convolutional Neural Network (CNN). On the one hand, these methods do not make full use of label correlation to form feature representation. On the other hand, they increase the label noise sensitivity of the system, resulting in poor robustness. In this paper, a novel method called Semantic Interleaving Global Channel Attention (SIGNA) is proposed for MLRSIC. First, the label co-occurrence graph is obtained according to the statistical information of the data set. The label co-occurrence graph is used as the input of the Graph Neural Network (GNN) to generate optimal feature representations. Then, the semantic features and visual features are interleaved, to guide the feature expression of the image from the original feature space to the semantic feature space with embedded label relations. SIGNA triggers global attention of feature maps channels in a new semantic feature space to extract more important visual features. Multihead SIGNA based feature adaptive weighting networks are proposed to act on any layer of CNN in a plug-and-play manner. For remote sensing images, better classification performance can be achieved by inserting CNN into the shallow layer. We conduct extensive experimental comparisons on three data sets: UCM data set, AID data set, and DFC15 data set. Experimental results demonstrate that the proposed SIGNA achieves superior classification performance compared to state-of-the-art (SOTA) methods. It is worth mentioning that the codes of this paper will be open to the community for reproducibility research. Our codes are available at https://github.com/kyle-one/SIGNA.