论文标题

具有尖峰神经网络的神经符号计算

Neuro-symbolic computing with spiking neural networks

论文作者

Dold, Dominik, Garrido, Josep Soler, Chian, Victor Caceres, Hildebrandt, Marcel, Runkler, Thomas

论文摘要

知识图是一种表达性且广泛使用的数据结构,因为它们能够以明智和机器可读的方式整合来自不同域的数据。因此,它们可用于建模各种系统,例如分子和社交网络。但是,仍然是一个悬而未决的问题,如何在峰值系统中实现符号推理,因此,如何将尖峰神经网络应用于此类图数据。在这里,我们通过证明如何使用尖峰神经元可以编码符号和多关系信息,从而扩展了基于SPIKE的图形算法的先前工作,从而允许对具有尖峰神经网络的知识图等符号结构进行推理。引入的框架是通过将嵌入范式组合到使用错误反向传播的训练尖峰神经网络的最新进展来启用的。提出的方法适用于各种尖峰神经元模型,可以与其他可区分的网络体系结构结合端对端训练,我们通过实现尖峰的关系图神经网络来证明这一点。

Knowledge graphs are an expressive and widely used data structure due to their ability to integrate data from different domains in a sensible and machine-readable way. Thus, they can be used to model a variety of systems such as molecules and social networks. However, it still remains an open question how symbolic reasoning could be realized in spiking systems and, therefore, how spiking neural networks could be applied to such graph data. Here, we extend previous work on spike-based graph algorithms by demonstrating how symbolic and multi-relational information can be encoded using spiking neurons, allowing reasoning over symbolic structures like knowledge graphs with spiking neural networks. The introduced framework is enabled by combining the graph embedding paradigm and the recent progress in training spiking neural networks using error backpropagation. The presented methods are applicable to a variety of spiking neuron models and can be trained end-to-end in combination with other differentiable network architectures, which we demonstrate by implementing a spiking relational graph neural network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源