论文标题
黑孔磁层中的磁重新连接:Lepton加载到喷气机中
Magnetic Reconnection in Black-Hole Magnetospheres: Lepton Loading into Jets, Superluminal Radio Blobs, and Multi-wavelength Flares
论文作者
论文摘要
正如观察到的静光无线电斑点所表明的那样,活跃银河核中的超质量黑洞发射了相对论喷射。这些喷气机的能源在Blandford-Znajek工艺的理论框架(从旋转的黑洞(BHS)中提取电磁能的理论框架(BHS),而电磁主导的Jets中无线电斑点的形成机制是一个长期的问题。最近对磁性磁盘的高分辨率磁水动力学模拟在BH地平线附近的赤道磁盘的瞬时磁磁体主导的部分中表现出磁重新连接,从而导致有效的MEV GAMMA-RAY产生的有希望的情况,并随后的电子磁通层加载到BH MagnEtophere中。我们开发了这种情况,以建立一个关于高光无线电斑点的能量,时间尺度和粒子数密度的理论框架,并讨论其他波段中可观察到的特征。我们分析表明,非热电子从光学到多MEV频段散发出宽带光子。在磁层中产生的电子峰值对具有光学厚的同步加速器吸收,因此注入的能量存储在等离子体中。存储的能量足以为在M87中观察到的级别无线电斑点提供动力。这种情况预测了SGR A*围绕SGR A*的昏暗无线电斑点,这与当前设施没有明确检测一致。此外,这种情况不可避免地会在短时间内产生强大的X射线耀斑,这将被未来的X射线卫星检测到。
Supermassive black holes in active galactic nuclei launch relativistic jets, as indicated by observed superluminal radio blobs. The energy source of these jets is widely discussed in the theoretical framework of Blandford-Znajek process, the electromagnetic energy extraction from rotating black holes (BHs), while formation mechanism of the radio blobs in the electromagnetically-dominated jets has been a long-standing problem. Recent high-resolution magnetohydrodynamic simulations of magnetically arrested disks exhibited magnetic reconnection in a transient magnetically-dominated part of the equatorial disk near the BH horizon, which led to a promising scenario of efficient MeV gamma-ray production and subsequent electron-positron pair loading into BH magnetosphere. We develop this scenario to build a theoretical framework on energetics, timescales and particle number density of the superluminal radio blobs and discuss observable signatures in other wavebands. We analytically show that the non-thermal electrons emit broadband photons from optical to multi-MeV bands. The electron-positron pairs produced in the magnetosphere are optically thick for synchrotron-self absorption, so that the injected energy is stored in the plasma. The stored energy is enough to power the superluminal radio blobs observed in M87. This scenario predicts rather dim radio blobs around Sgr A*, which are consistent with no clear detection by current facilities. In addition, this scenario inevitably produces strong X-ray flares in a short timescale, which will be detectable by future X-ray satellites.