论文标题
关于强的大地识别问题的计算复杂性
On the Computational Complexity of the Strong Geodetic Recognition Problem
论文作者
论文摘要
图形〜$ g =(v,e)$的强大大地测量集是一个顶点〜$ s \ subseteq v(g)$,其中可以通过分配每个vertertex对〜$ s $之间的唯一最短路径来覆盖〜$ v(g)\ setMinus s $的所有其余顶点。在强烈的测量问题(SG)中,图表〜$ g $和一个正整数〜$ k $作为输入给出,并且必须决定〜$ g $最多〜$ k $具有强大的地球基础性。已知此问题是通用图的NP固定。在这项工作中,我们介绍了强大的大地测量识别问题(SGR),其中包括确定即使是给定的顶点集〜$ s \ subseteq v(g)$是否也是强大的大地测量基因。我们证明了此版本是NP完整的。我们研究并比较了两个决策问题的计算复杂性,仅限于某些图形类别,得出多项式时间算法,NP完整性证明和初始参数化的复杂性结果,包括在文献中回答有关和弦图的SG复杂性的答案。
A strong geodetic set of a graph~$G=(V,E)$ is a vertex set~$S \subseteq V(G)$ in which it is possible to cover all the remaining vertices of~$V(G) \setminus S$ by assigning a unique shortest path between each vertex pair of~$S$. In the Strong Geodetic problem (SG) a graph~$G$ and a positive integer~$k$ are given as input and one has to decide whether~$G$ has a strong geodetic set of cardinality at most~$k$. This problem is known to be NP-hard for general graphs. In this work we introduce the Strong Geodetic Recognition problem (SGR), which consists in determining whether even a given vertex set~$S \subseteq V(G)$ is strong geodetic. We demonstrate that this version is NP-complete. We investigate and compare the computational complexity of both decision problems restricted to some graph classes, deriving polynomial-time algorithms, NP-completeness proofs, and initial parameterized complexity results, including an answer to an open question in the literature for the complexity of SG for chordal graphs.