论文标题

关于强的大地识别问题的计算复杂性

On the Computational Complexity of the Strong Geodetic Recognition Problem

论文作者

Lima, Carlos V. G. C., Santos, Vinicius F. dos, Sousa, João H. G., Urrutia, Sebastián A.

论文摘要

图形〜$ g =(v,e)$的强大大地测量集是一个顶点〜$ s \ subseteq v(g)$,其中可以通过分配每个vertertex对〜$ s $之间的唯一最短路径来覆盖〜$ v(g)\ setMinus s $的所有其余顶点。在强烈的测量问题(SG)中,图表〜$ g $和一个正整数〜$ k $作为输入给出,并且必须决定〜$ g $最多〜$ k $具有强大的地球基础性。已知此问题是通用图的NP固定。在这项工作中,我们介绍了强大的大地测量识别问题(SGR),其中包括确定即使是给定的顶点集〜$ s \ subseteq v(g)$是否也是强大的大地测量基因。我们证明了此版本是NP完整的。我们研究并比较了两个决策问题的计算复杂性,仅限于某些图形类别,得出多项式时间算法,NP完整性证明和初始参数化的复杂性结果,包括在文献中回答有关和弦图的SG复杂性的答案。

A strong geodetic set of a graph~$G=(V,E)$ is a vertex set~$S \subseteq V(G)$ in which it is possible to cover all the remaining vertices of~$V(G) \setminus S$ by assigning a unique shortest path between each vertex pair of~$S$. In the Strong Geodetic problem (SG) a graph~$G$ and a positive integer~$k$ are given as input and one has to decide whether~$G$ has a strong geodetic set of cardinality at most~$k$. This problem is known to be NP-hard for general graphs. In this work we introduce the Strong Geodetic Recognition problem (SGR), which consists in determining whether even a given vertex set~$S \subseteq V(G)$ is strong geodetic. We demonstrate that this version is NP-complete. We investigate and compare the computational complexity of both decision problems restricted to some graph classes, deriving polynomial-time algorithms, NP-completeness proofs, and initial parameterized complexity results, including an answer to an open question in the literature for the complexity of SG for chordal graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源