论文标题
可区分的细分表面拟合
Differentiable Subdivision Surface Fitting
论文作者
论文摘要
在本文中,我们提出了一种强大的可区分表面拟合技术,可为给定的致密点云或网格提供紧凑的表面表示,并在图形和CAD/CAM的域中应用。我们选择了循环细分表面,该表面在极限中产生了点云的光滑表面,并且可以比其他流行的紧凑型表示(例如NURBS)更好地处理复杂的表面拓扑。主要思想是将循环细分表面不直接放在点云中,而是将iML(隐式移动最小二乘)表面定义在点云上。由于循环细分和IML都具有分析表达式,因此我们能够将问题提出为完全可区分函数的无约束最小化问题,可以用标准数值求解器来解决。不同的性使我们能够将细分表面集成到任何深度学习方法中,以进行点云或网格。我们通过与可区分的渲染器结合使用该方法来证明这种方法的多功能性和潜力,以稳健地重建密集网格的时空序列的紧凑表面表示。
In this paper, we present a powerful differentiable surface fitting technique to derive a compact surface representation for a given dense point cloud or mesh, with application in the domains of graphics and CAD/CAM. We have chosen the Loop subdivision surface, which in the limit yields the smooth surface underlying the point cloud, and can handle complex surface topology better than other popular compact representations, such as NURBS. The principal idea is to fit the Loop subdivision surface not directly to the point cloud, but to the IMLS (implicit moving least squares) surface defined over the point cloud. As both Loop subdivision and IMLS have analytical expressions, we are able to formulate the problem as an unconstrained minimization problem of a completely differentiable function that can be solved with standard numerical solvers. Differentiability enables us to integrate the subdivision surface into any deep learning method for point clouds or meshes. We demonstrate the versatility and potential of this approach by using it in conjunction with a differentiable renderer to robustly reconstruct compact surface representations of spatial-temporal sequences of dense meshes.