论文标题

量化多访问量化的多源MIMO通信

Rate-Splitting Multiple Access for Quantized Multiuser MIMO Communications

论文作者

Park, Seokjun, Choi, Jinseok, Park, Jeonghun, Shin, Wonjae, Clerckx, Bruno

论文摘要

本文研究了在接入点(AP)和用户下的下行链路多输入多输出(MIMO)系统中的下行链路多输入多输出(MIMO)系统中的总和光谱效率最大化问题。特别是,我们考虑通过提供可提高可实现的自由度的机会来提高多个访问(RSMA)来提高光谱效率。但是,优化RSMA预编码器在确定公共流率时的最低率限制,因此高度挑战。量化误差与预编码器相结合,进一步使问题更加复杂且难以解决。在本文中,我们开发了一种新型的RSMA预编码算法,该算法结合了量化误差,以最大程度地提高频谱效率。为此,我们首先在光滑函数中获得近似光谱效率。随后,我们以非线性特征值问题(NEP)的形式得出一阶最佳条件。我们提出了一种计算有效的算法,以将NEP的主要特征向量作为亚最佳解决方案找到。仿真结果验证了所提出方法的优质光谱效率。使用RSMA而不是空间分裂多访问(SDMA)的关键好处来自公共流在具有不同量化分辨率的多源MIMO系统中通道增益和量化误差之间平衡的能力。

This paper investigates the sum spectral efficiency maximization problem in downlink multiuser multiple-input multiple-output (MIMO) systems with low-resolution quantizers at an access point (AP) and users. In particular, we consider rate-splitting multiple access (RSMA) to enhance spectral efficiency by offering opportunities to boost achievable degrees of freedom. Optimizing RSMA precoders, however, is highly challenging due to the minimum rate constraint when determining the rate of the common stream. The quantization errors coupled with the precoders further make the problem more complicated and difficult to solve. In this paper, we develop a novel RSMA precoding algorithm incorporating quantization errors for maximizing the sum spectral efficiency. To this end, we first obtain an approximate spectral efficiency in a smooth function. Subsequently, we derive the first-order optimality condition in the form of the nonlinear eigenvalue problem (NEP). We propose a computationally efficient algorithm to find the principal eigenvector of the NEP as a sub-optimal solution. Simulation results validate the superior spectral efficiency of the proposed method. The key benefit of using RSMA over spatial division multiple access (SDMA) comes from the ability of the common stream to balance between the channel gain and quantization error in multiuser MIMO systems with different quantization resolutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源