论文标题
从扩展/扩展的NAPPI-ONGENTER中的2+1维中的非相关性Spin-3对称性
Non-relativistic spin-3 symmetries in 2+1 dimensions from expanded/extended Nappi-Witten algebras
论文作者
论文摘要
我们表明,非权利主义旋转的无限家族$ 3 $符号为$ 2+1 $尺寸,其中包括Bargmann,Newton-Hooke,Newton-Hooke,非权威主义的Maxwell和非相关性Ads-Lorentz代数的较高速度扩展,可以作为两种不同的smertry sprientions symery spinition-extry-extry-extry-extry-extry-3 $ 3 $ 3 $ 3 $。这些高旋转纳皮的代数反过来又是通过inönü-wigner收缩来获得的,用于$ \ mathfrak {sl}(3,\ mathbb {r})$的合适的直接产品扩展。相反,我们证明可以通过考虑扩展的$ \ mathfrak {sl}(3,\ Mathbb {r})$代数来获得相同的结果。该方法可用于以系统的方式定义$ 2+1 $尺寸的非相关性高旋转重力理论。
We show that infinite families of non-relativistic spin-$3$ symmetries in $2+1$ dimensions, which include higher-spin extensions of the Bargmann, Newton-Hooke, non-relativistic Maxwell, and non-relativistic AdS-Lorentz algebras, can be obtained as Lie algebra expansions of two different spin-$3$ extensions of the Nappi-Witten symmetry. These higher-spin Nappi-Witten algebras, in turn, are obtained by means of Inönü-Wigner contractions applied to suitable direct product extensions of $\mathfrak{sl}(3,\mathbb{R})$. Conversely, we show that the same result can be obtained by considering contractions of expanded $\mathfrak{sl}(3,\mathbb{R})$ algebras. The method can be used to define non-relativistic higher-spin Chern-Simon gravity theories in $2+1$ dimensions in a systematic way.