论文标题
在Smoluchowski-Kramers扩散近似方案中应用于多尺度SDE的数值方案的均匀强和弱误差估计值
Uniform strong and weak error estimates for numerical schemes applied to multiscale SDEs in a Smoluchowski-Kramers diffusion approximation regime
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We study a family of numerical schemes applied to a class of multiscale systems of stochastic differential equations. When the time scale separation parameter vanishes, a well-known Smoluchowski--Kramers diffusion approximation result states that the slow component of the considered system converges to the solution of a standard Itô stochastic differential equation. We propose and analyse schemes for strong and weak effective approximation of the slow component. Such schemes satisfy an asymptotic preserving property and generalize the methods proposed in a recent article. We fill a gap in the analysis of these schemes and prove strong and weak error estimates, which are uniform with respect to the time scale separation parameter.