论文标题

经历有限时间热力学过程的稀疏限制水分子

A sparcely confined water molecules undergoing finite-time thermodynamic processes

论文作者

Bassie, Yigermal, Mahmud, Mohammed, Bekele, and Mulugeta

论文摘要

将大量的水分子置于远距离的晶格上,以使它们彼此之间非常微弱的相互作用,并在温度$ t $的温度下与热浴接触。强大的静态电场,$ e_ {0} $,将这些分子应用于$ z $轴,导致三个级别的拆分能量值。在$ xy- $平面上应用有限时间$τ$的薄弱交流电场可导致三个级别之间的过渡。该弱AC字段充当协议$ζ(t)$,以$ t = 0 $打开,并以$ t =τ$关闭。通过该协议,该系统是从初始热力学平衡状态$ f(t,0)$ to到非平衡状态$ f_ f_ {non-equil}(t,τ)$当在时间$ t =τ$关闭时记录的。再次打开AC字段,并让其在相同的有限时间$τ$及其非平衡状态$ f_ {non-equil}(t,τ)$时,当AC字段关闭时记录了。大量次数重复相同的循环过程。适用于此有限时间非平衡过程的数据使我们能够提取平衡热力学量(例如自由能,这就是我们称之为jarznski平等的方法及其与第二种热力学定律的关系。获得了最佳条件下三级系统的工作分布。此外,评估了系统的平均工作作为$ω$的函数,并评估了最佳频率周围的时间,其中$ω$是交流电场的频率。

A large number of water molecules are each placed on a lattice far apart so that they are very weakly interacting with each other and in contact with a heat bath at temperature $T$. A strong static electric field, $E_{0}$, is applied to these molecules along a $z$-axis causing three level split energy values. A weak AC electric field that acts for a finite time $τ$ applied in the $xy-$plane induces transitions between the three levels. This weak AC field acts as a protocol $ζ(t)$, that is switched on at $t=0$ and switched off at $t=τ$. Through this protocol, the system is taken from an initial thermodynamic equilibrium state $F(T,0)$ to the non-equilibrium state $F_{non-equil}(T, τ)$ recorded right when the AC field is switched off at time $t=τ$. Once again the AC field is switched on and let it act for the same finite amount of time $τ$ and its non-equilibrium state $F_{non-equil}(T, τ)$ recorded right when the AC field is switched off. The same cyclic process is repeated for a large number of times. The data available for this finite-time non-equilibrium process allowed us to extract equilibrium thermodynamic quantities like free energy, which is what we call Jarznski equality and its relation to the second law of thermodynamics. The work distributions of the three-level system in the optimum condition is obtained. Besides, the average work of the system as a function of $ω$ and time around the optimum frequency are evaluated, where $ω$ is the frequency of the AC electric field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源